浏览全部资源
扫码关注微信
杭州电子科技大学通信工程学院,浙江 杭州 310018
[ "宋玲玉(2000- ),女,杭州电子科技大学通信工程学院硕士生,主要研究方向为无线通信系统。" ]
[ "潘鹏(1983- ),男,杭州电子科技大学通信工程学院教授,主要研究方向为MIMO及大规模MIMO预编码和容量分析、多用户检测。" ]
[ "刘天乐(1988- ),男,杭州电子科技大学通信工程学院讲师,主要研究方向为绿色通信。" ]
收稿日期:2024-09-19,
修回日期:2024-12-03,
纸质出版日期:2025-01-20
移动端阅览
宋玲玉,潘鹏,刘天乐.基于K-Medoids提取信道状态特征的无人机探测方法[J].电信科学,2025,41(01):75-87.
SONG Lingyu,PAN Peng,LIU Tianle.Drone detection method based on K-Medoids to extract channel state characteristics[J].Telecommunications Science,2025,41(01):75-87.
宋玲玉,潘鹏,刘天乐.基于K-Medoids提取信道状态特征的无人机探测方法[J].电信科学,2025,41(01):75-87. DOI: 10.11959/j.issn.1000-0801.2025008.
SONG Lingyu,PAN Peng,LIU Tianle.Drone detection method based on K-Medoids to extract channel state characteristics[J].Telecommunications Science,2025,41(01):75-87. DOI: 10.11959/j.issn.1000-0801.2025008.
对低空目标的有效管控是推动低空
经济发展的关键。城市环境中强杂波和建筑物遮挡等因素使得传统雷达探测手段难以实现对低速无人机的有效监测。基于此,提出了一种无人机探测的新思路,即通过识别信道状态特征的变化来判断无人机是否出现在指定区域。该方法的核心在于利用城市中已广泛部署的移动基站等外辐射源,基于K-Medoids聚类算法捕捉无人机出现后对原有多径信道路径数量的影响,从而实现对无人机的感知。该方法不需要构建精确的参考信号,也不需要利用多普勒体制抑制强杂波。仿真结果表明,所提方法在1 km
2
范围内能实现80%以上的检测概率,且随着范围缩小,检测概率能达到90%左右,因此能够在城市场景下有效探测低空慢速无人机。
Effective management of low-altitude targets is key to promot the development of the low-altitude economy. In urban environments
strong clutter and building occlusion make it difficult for traditional radar detection methods to effectively monitor low-speed drones. Based on this
a new approach of drone detection was proposed
which involved identifying changes in channel state characteristics to determine whether a drone was presented in a specified area. The core of this method lied in utilizing the already widely deployed mobile base stations and other external radiation sources in cities
capturing the impact of drone presence on the number of multipath channel paths by using the K-Medoids clustering algorithm
to achieve drone perception. This method did not require the construction of an accurate reference signal nor the use of Doppler systems to suppress strong clutter. Simulation results show that the proposed method can achieve detection probabilities of over 80% within a range of 1 square kilometer
and the detection probability can reach about 90% as the range decreases. Therefore
it is capable of effectively detecting low-altitude
slow-moving drones in urban scenarios.
蒋镕圻 , 白若楷 , 彭月平 . 低慢小无人机目标探测技术综述 [J ] . 飞航导弹 , 2020 ( 9 ): 100 - 105 .
JIANG R Q , BAI R K , PENG Y P . A review of target detection technology for low-slow and small unmanned aerial vehicles [J ] . Aerodynamic Missile Journal , 2020 ( 9 ): 100 - 105 .
苗铎 , 杨东凯 , 许志超 , 等 . GNSS外辐射源雷达低慢小目标探测概率 [J ] . 北京航空航天大学学报 , 2023 , 49 ( 3 ): 657 - 664 .
MIAO D , YANG D K , XU Z C , et al . Low-altitude, slow speed and small target detection probability of passive radar based on GNSS signals [J ] . Journal of Beijing University of Aeronautics and Astronautics , 2023 , 49 ( 3 ): 657 - 664 .
LU M , YI J , WAN X , et al . Target tracking in time-division-multifrequency-based passive radar [J ] . IEEE Sensors Journal , 2020 , 20 ( 8 ): 4382 - 4394 .
UMMENHOFER M , LAVAU L C , CRISTALLINI D , et al . UAV Micro-Doppler signature analysis using DVB-S based passive radar [C ] // 2020 IEEE Internationa Radar Conference(RADAR) . Piscataway : IEEE Press , 2020 : 1007 - 1012 .
MARTELLI T , FILIPPINI F , COLONE F . Tackling the different target dynamics issues in counter drone operations using passive radar [C ] // 2020 IEEE International Radar Conference (RADAR) . Piscataway : IEEE Press , 2020 : 512 - 517 .
STEFFES C , DEMISSIE B , MANDT M , et al . Surveillance of critical infrastructure using the LTE450 network as passive radar illuminator: feasibility study and range assessment [C ] // 2022 Sensor Data Fusion: Trends , Solutions, Applications (SDF) . Piscataway : IEEE Press , 2022 : 1 - 6 .
赵倩 . 基于LTE外辐射源的无人机定位技术研究 [D ] . 北京 : 北京邮电大学 , 2021 .
ZHAO Q . Research on UAV positioning based on LTE illuminators [D ] . Beijing : Beijing University of Posts and Telecommunications , 2021 .
谢跃雷 , 刘信 , 梁文斌 . 基于循环谱的外辐射源无人机微动特征检测 [J ] . 电讯技术 , 2021 , 61 ( 4 ): 446 - 453 .
XIE Y L , LIU X , LIANG W B . Micro-motion feature detection of UAV based on passive radar and cyclic spectrum [J ] . Telecommunication Engineering , 2021 , 61 ( 4 ): 446 - 453 .
HU Y , PENG A , LI S , et al . Channel state information-based wireless localization by signal reconstruction [J ] . EURASIP Journal on Wireless Communications and Networking , 2023 ( 1 ): 114 .
GUO Y , FEI R , LI J , et al . CBHQD: a channel state information-based passive line-of-sight human queue detection [J ] . Digital Signal Processing , 2024 , 154 : 104687 .
GARCIA A A J , NAVARRO G F F , GUTIERREZ C J . Wireless sensing applications with Wi-Fi channel state information, preprocessing techniques, and detection algorithms: a survey [J ] . Computer Communications , 2024 , 224 : 254 - 274 .
于博尧 . 基于信道状态信息的多无人机网络持续认证方案 [D ] . 西安 : 西安电子科技大学 , 2020 .
YU B Y . Continuous authentication for the multi-UAV network using channel state information [D ] . Xi’an : XiDian University , 2020 .
徐靖 . 基于无线信道状态信息的通信感知一体化关键技术研究 [D ] . 南京 : 东南大学 , 2022 .
XU J . Research on key technologies in integrated sensing and communication based on wireless channel state information [D ] . Nanjing : Southeast University , 2022 .
梁静远 , 陈明惠 , 王惠琴 , 等 . 无线光通信自适应阈值检测技术研究进展 [J ] . 电子测量与仪器学报 , 2023 , 37 ( 7 ): 1 - 16 .
LIANG J Y , CHEN M H , WANG H Q , et al . Research progress of adaptive threshold detection technology for wireless optical communication [J ] . Journal of Electronic Measurement and Instrumentation , 2023 , 37 ( 7 ): 1 - 16 .
CISEK G , ZIELINSKI T P . Validation of cloud‐radio access network control unit with intra‐PHY architecture: Hardware‐in‐the‐loop framework based on frequency‐domain channel models [J ] . Transactions on Emerging Telecommunications Technologies , 2020 , 32 ( 1 ): e4134 .
CHENMING Z , RONALD J , LINCAN Y , et al . Time domain and frequency domain deterministic channel modeling for tunnel/mining environments [J ] . Progress in Electromagnetics Research C. Pier C , 2017 , 79 : 209 - 223 .
YUAN H , JIA J , ZHANG R . An efficient algorithm to compute the RCS of UAV swarmbased on spherical harmonic transform [J ] . Electromagnetics , 2021 , 41 ( 4 ): 239 - 252 .
黄芳 . 海上无线电波传播特性与信道建模研究 [D ] . 海口 : 海南大学 , 2015 .
HUANG F . Research on characteristics of maritime wireless radio propagation and channel modeling [D ] . Haikou : Hainan University , 2015 .
韦清玉 . 基于外辐射源的低慢小目标无源探测研究 [D ] . 南京 : 南京理工大学 , 2020 .
WEI Q Y . Research on passive detection of low, slow and small targets based on external radiation sources [D ] . Nanjing : Nanjing University of Science and Technology , 2020 .
BABU T A , RAO K D . Performance analysis of channel estimation techniques for 5G massive MIMO-OFDM system [J ] . International Journal of Systems, Control and Communications , 2023 , 14 ( 2 ): 116 - 131 .
STEINLEY D . K-means clustering: a half-century synthesis [J ] . British Journal of Mathematical and Statistical Psychology , 2006 , 59 ( 1 ): 1 - 34 .
谢兆哲 , 程永强 , 吴昊 , 等 . 基于Toeplitz矩阵特征值分解的SAR图像舰船目标检测方法 [J ] . 信号处理 , 2023 , 39 ( 3 ): 496 - 504 .
XIE Z Z , CHENG Y Q , WU H , et al . Ship target detection method in SAR imagery based on eigenvalue decomposition of the Toeplitz matrix [J ] . Journal of Signal Processing . 2023 , 39 ( 3 ): 496 - 504 .
0
浏览量
27
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构