浏览全部资源
扫码关注微信
1.北京邮电大学信息光子学与光通信全国重点实验室,北京 100876
2.北京邮电大学电子工程学院,北京 100876
[ "史庆娜(2002- ),女,北京邮电大学电子工程学院硕士生,主要研究方向为光网络的路由与资源分配、光网络资源优化。" ]
[ "王佳雪(2001- ),女,北京邮电大学电子工程学院硕士生,主要研究方向为光网络智能资源优化与机器学习。" ]
[ "李诗语(2002- ),女,北京邮电大学电子工程学院硕士生,主要研究方向为光网络与机器学习。" ]
蔡梦茹(2000- ),女,北京邮电大学电子工程学院硕士生,主要研究方向为边缘计算任务卸载、光网络资源优化和预测等。
刘晓东(1999- ),男,北京邮电大学电子工程学院博士生,主要研究方向为光网络的路由与资源分配、边缘计算网络的卸载以及机器学习。
尹珊(1987- ),女,北京邮电大学信息光子学与光通信全国重点实验室副教授,主要研究方向为光网络智能资源优化、机器学习和优化方法等。yinshan@bupt.edu.cn
黄善国(1978- ),男,北京邮电大学教授、博士生导师,北京邮电大学信息光子学与光通信全国重点实验室主任,北京邮电大学副校长,国家杰出青年科学基金、优秀青年科学基金获得者,中国电子学会常务理事,中国光学工程学会光通信与信息网络专委会副主任委员,目前主要研究方向为多维光交换与光网络理论与技术,包括大规模智能光交换与数据光网络、传输网规划与优化、地空天空间光交换与组网等。
收稿日期:2024-11-30,
修回日期:2024-12-31,
纸质出版日期:2025-01-20
移动端阅览
史庆娜,王佳雪,李诗语等.fgOTN应用于智算中心互联研究综述[J].电信科学,2025,41(01):26-41.
SHI Qingna,WANG Jiaxue,LI Shiyu,et al.Review of the application of fgOTN in the interconnection of artificial intelligence data centers[J].Telecommunications Science,2025,41(01):26-41.
史庆娜,王佳雪,李诗语等.fgOTN应用于智算中心互联研究综述[J].电信科学,2025,41(01):26-41. DOI: 10.11959/j.issn.1000-0801.2025022.
SHI Qingna,WANG Jiaxue,LI Shiyu,et al.Review of the application of fgOTN in the interconnection of artificial intelligence data centers[J].Telecommunications Science,2025,41(01):26-41. DOI: 10.11959/j.issn.1000-0801.2025022.
随着智算中心数据流量和业务需求的快速增长,高效、灵活的网络解决方案成为关键。细颗粒光传送网(fine grain optical transport network,fgOTN)作为同步数字体系(synchronous digital hierarchy,SDH)技术的接续与光传送网(optical transport network,OTN)技术的扩展,被应用于智算中心互联,以满足其灵活调度、高效传输、严格安全隔离和低时延等多重需求。首先,介绍了fgOTN的基本概念、技术架构及应用场景,随后,阐述了智算中心的相关概念、体系架构、关键技术及应用场景。在此基础上,重点探讨了fgOTN在智算中心互联中的应用,旨在促进智算中心间数据传输的高效、可靠。最后,论述了fgOTN应用于智算中心互联的研究方向和发展趋势。
With the rapid growth of data traffic and service requirements in artificial intelligence data centers
efficient and flexible network solutions have become critical. The fine grain optical transport network (fgOTN)
which serves as a continuation of synchronous digital hierarchy (SDH) technology and an extension of optical transport network (OTN) technology
is applied in the interconnection of artificial intelligence data centers to meet their multiple requirements for flexible scheduling
efficient transmission
strict security isolation
and low latency. Firstly
the basic concepts
technical architecture
and application scenarios of fgOTN were introduced. Subsequently
the related concepts
architectures
key technologies
and application scenarios of artificial intelligence data centers were elaborated. Based on these foundations
the application of fgOTN in interconnection of artificial intelligence data centers was discussed in detail
aiming to promote efficient and reliable data transmission between artificial intelligence data centers. Finally
the research directions and development trends were discussed.
AGIWAL M , ROY A , SAXENA N . Next generation 5G wireless networks: a comprehensive survey [J ] . IEEE Communications Surveys & Tutorials , 2016 , 18 ( 3 ): 1617 - 1655 .
SERIZAWA Y , KITAMURA K , MYOUJIN M , et al . SDH-based time synchronous system for power system communications [J ] . IEEE Transactions on Power Delivery , 1998 , 13 ( 1 ): 59 - 65 .
XIA T J , GRINGERI S , TOMIZAWA M . High-capacity optical transport networks [J ] . IEEE Communications Magazine , 2012 , 50 ( 11 ): 170 - 178 .
WANG T , XIA Y , MUPPALA J , et al . Achieving energy efficiency in data centers using an artificial intelligence abstraction model [J ] . IEEE Transactions on Cloud Computing , 2018 , 6 ( 3 ): 612 - 624 .
ZHANG Y X , REN J , LIU J G , et al . A survey on emerging computing paradigms for big data [J ] . Chinese Journal of Electronics , 2017 , 26 ( 1 ): 1 - 12 .
CHENG Q X , BAHADORI M , GLICK M , et al . Recent advances in optical technologies for data centers: a review [J ] . Optica , 2018 , 5 ( 11 ): 1354 .
MALCOLM B , TOM H . Proposed structure of recommendations for Sub-1G application [C ] //Geneva: T 22-SG15-TD180/WP3 , ITU-T SG15 Plenary Meeting , 2023 .
ITU-T . Overview of fine grain OTN : ITU-T G.709.20 [S ] . 2023 .
ITU-T . Fine grain flexible ODU (fgODUflex) path layer network : ITU-T G.709 Annex M (Mapping fgODUflex signals into the fgODTU sign al and the fgODTU into the OPU fine grain tributary slots) [S ] . 2023 .
ITU-T . Hitless bandwidth adjustment of fgODUflex : ITU-T G.709 Annex O [S ] . 2023 .
WEI S , HAN L , WINSTON M , et al . Text enhancements of fgOTN resizing [C ] //Geneva: T 22-SG15-C-0817 , ITU-T SG15 Plenary Meeting , 2023 .
ITU-T . Fine grain flexible ODU (fgODUflex) path layer network : ITU-T G.872 Annex A [S ] . 2023 .
华为技术有限公司 . fgOTN(细颗粒光传送网)技术白皮书 [R ] . 2024 .
Huawei Technologies Co., Ltd. . fgOTN (fine-grain optical transport network) technical white paper [R ] . 2024 .
中国移动 . “九州”算力光网目标网架构白皮书 [R ] . 2023 .
China Mobile . “Jiuzhou” computing power optical network target architecture white paper [R ] . 2023 .
华为技术有限公司 . 电力fgOTN技术白皮书 [R ] . 2024 .
Huawei Technologies Co., Ltd. . fgOTN white paper for electric power [R ] . 2024 .
WANG H , NING H S , LIN Y J , et al . A survey on the metaverse: the state-of-the-art, technologies, applications, and challenges [J ] . IEEE Internet of Things Journal , 2023 , 10 ( 16 ): 14671 - 14688 .
ROSARIO , UCEDA-SOSA . Computer vision: a reference guide [J ] . Computing Reviews , 2016 , 57 ( 4 ): 238 - 239 .
杨震 . 自动驾驶技术进展与运营商未来信息服务架构演进 [J ] . 电信科学 , 2016 , 32 ( 8 ): 16 - 20 .
YANG Z . Progress of automatic driving technology and future information service architecture evolution of telecom operators [J ] . Telecommunications Science , 2016 , 32 ( 8 ): 16 - 20 .
RICHINS D , DOSHI D , BLACKMORE M , et al . Missing the forest for the trees: end-to-end AI application performance in edge data centers [C ] // Proceedings of the 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA) . Piscataway : IEEE Press , 2020 : 515 - 528 .
孙长秋 , 杜长斌 , 李欣宇 , 等 . 智算中心关键技术研究 [J ] . 通信管理与技术 , 2024 ( 2 ): 33 - 37, 52 .
SUN C Q , DU C B , LI X Y , et al . Research on key technologies of intelligent computing centers [J ] . Communications Management and Technology , 2024 ( 2 ): 33 - 37, 52 .
SHUVO M M H , ISLAM S K , CHENG J L , et al . Efficient acceleration of deep learning inference on resource-constrained edge devices: a review [J ] . Proceedings of the IEEE , 2023 , 111 ( 1 ): 42 - 91 .
CERIOLI A , MICCINI R , LAROCHE C , et al . NeuralCasting: a front-end compilation infrastructure for neural networks [C ] // Proceedings of the 2024 11th International Conference on Internet of Things: Systems, Management and Security (IOTSMS) . Piscataway : IEEE Press , 2024 : 161 - 168 .
GOPIKTRISHNA P B , MARION LINCY G R , RISHEKEE-SHAN A , et al . Accelerating native inference model performance in edge devices using TensorRT [C ] // Proceedings of the 2024 IEEE Recent Advances in Intelligent Computational Systems (RAICS) . Piscataway : IEEE Press , 2024 : 1 - 7 .
HU L , ZHU J C , ZHOU Z R , et al . An optimal resource allocator of elastic training for deep learning jobs on cloud [J ] . arXiv preprint , 2021 : 2109 .03389.
尹林 , 王富 , 王小龙 , 等 . 面向算力互联的快速光交换技术研究(特邀) [J ] . 光通信研究 , 2024 ( 5 ): 50 - 57 .
YIN L , WANG F , WANG X L , et al . Fast optical switching for computing-power interconnects [J ] . Study on Optical Communications , 2024 ( 5 ): 50 - 57 .
赵俊峰 , 李芳 , 叶晓峰 , 等 . 面向广域RDMA的确定性网络需求与技术 [J ] . 电信科学 , 2023 , 39 ( 11 ): 39 - 51 .
ZHAO J F , LI F , YE X F , et al . Research on deterministic networking requirements and technologies for RDMA-WAN [J ] . Telecommunications Science , 2023 , 39 ( 11 ): 39 - 51 .
ABDELLATIF A , BADRAN K , COSTA D E , et al . A comparison of natural language understanding platforms for chatbots in software engineering [J ] . IEEE Transactions on Software Engineering , 2022 , 48 ( 8 ): 3087 - 3102 .
STRIK H , CUCCHIARINI C . Modeling pronunciation variation for ASR: a survey of the literature [J ] . Speech Communication , 1999 , 29 ( 2/3/4 ): 225 - 246 .
FAN Y C , QIAN Y , XIE F L , et al . TTS synthesis with bidirectional LSTM based recurrent neural networks [C ] // Proceedings of the Interspeech 2014 . ISCA : ISCA , 2014 : 1964 - 1968 .
KACHRIS C , TOMKOS I . A survey on optical interconnects for data centers [J ] . IEEE Communications Surveys & Tutorials , 2012 , 14 ( 4 ): 1021 - 1036 .
ALI ABDULMAHDI ABDUL MAHDI E , AL-ASKERY A , ALI A H , et al . A survey of datacenter and optical data center networks [J ] . Journal of Techniques , 2024 , 6 ( 3 ): 66 - 75 .
唐雄燕 , 魏步征 , 沈世奎 , 等 . 智算数据中心光电交换技术综述(特邀) [J ] . 光通信研究 , 2024 ( 5 ): 5 - 17 .
TANG X Y , WEI B Z , SHEN S K , et al . Overview of optoelectronic switching technology in artificial intelligent data centers [J ] . Study on Optical Communications , 2024 ( 5 ): 5 - 17 .
FARRINGTON N , PORTER G , RADHAKRISHNAN S , et al . Helios: a hybrid electrical/optical switch architecture for modular data centers [C ] // Proceedings of the ACM SIGCOMM 2010 conference . New York : ACM , 2010 : 339 - 350 .
MELLETTE W M , MCGUINNESS R , ROY A , et al . RotorNet: a scalable, low-complexity, optical datacenter network [C ] // Proceedings of the Conference of the ACM Special Interest Group on Data Communication . New York : ACM , 2017 : 267 - 280 .
LEISERSON C E . Fat-trees: Universal networks for hardware-efficient supercomputing [J ] . IEEE Transactions on Computers , 1985 , C-34( 10 ): 892 - 901 .
GU H X , YU X S , LU Y F , et al . X-NEST+: a high bandwidth and reconfigurable optical interconnects for distributed machine learning and high-performance computing [C ] // Proceedings of the Optical Fiber Communication Conference (OFC) 2023 . Washington, D.C. : Optica Publishing Group , 2023 : 1 - 3 .
GHOBADI M , MAHAJAN R , PHANISHAYEE A , et al . ProjecToR: agile reconfigurable data center interconnect [C ] // Proceedings of the 2016 ACM SIGCOMM Conference . New York : ACM , 2016 : 216 - 229 .
尹欣 , 侯维刚 , 郭磊 . 一种自由空间光数据中心网络架构、拓扑重构系统和方法 : CN114745618A [P ] . 2022-07-12 .
YIN X , HOU W G , GUO L . Free space optical data center network architecture, topology reconstruction system and method : CN114745618A [P ] . 2022-07-12 .
LU Y F , GU H X , YU X S , et al . Lotus: a new topology for large-scale distributed machine learning [J ] . ACM Journal on Emerging Technologies in Computing Systems (JETC) , New York : ACM , 2020 , 17 ( 1 ): 1 - 21 .
ZHAO Z Q , XUE X W , GUO B L , et al . ReSAW: a reconfigurable and picosecond-synchronized optical data center network based on an AWGR and the WR protocol [J ] . Journal of Optical Communications and Networking , 2022 , 14 ( 9 ): 702 - 712 .
马伟成 . 基于数字孪生的OTN精品算网数智化运营方案 [J ] . 通信世界 , 2024 ( 2 ): 23 - 24 .
MA W C . Intelligent operation scheme for OTN boutique computing network based on digital twin [J ] . Communications World , 2024 ( 2 ): 23 - 24 .
ALEKSIC S . The future of optical interconnects for data centers: a review of technology trends [C ] // Proceedings of the 2017 14th International Conference on Telecommunications (ConTEL) . Piscataway : IEEE Press , 2017 : 41 - 46 .
YIN S , LIU L H , CAI M R , et al . DNN distributed inference offloading scheme based on transfer reinforcement learning in metro optical networks [J ] . Journal of Optical Communications and Networking , 2024 , 16 ( 9 ): 852 - 867 .
KANT K . Data center evolution: a tutorial on state of the art, issues, and challenges [J ] . Computer Networks , 2009 , 53 ( 17 ): 2939 - 2965 .
LU W , LIANG L P , KONG B X , et al . AI-assisted knowledge-defined network orchestration for energy-efficient data center networks [J ] . IEEE Communications Magazine , 2020 , 58 ( 1 ): 86 - 92 .
LIU W H , ZHAO Y L , LI Y J , et al . Segmented protection scheme based on maximum bandwidth sharing in F5G [J ] . Journal of Optical Communications and Networking , 2024 , 16 ( 11 ): 1145 - 1158 .
ZHAO Y , LIN Y , LI Y B , et al . Multi-layer resource scheduling architecture and algorithm for a service-oriented optical network based on a fine grain OTN [J ] . Journal of Optical Communications and Networking , 2024 , 16 ( 10 ): F13 - F25 .
ZHAO Y , LIN Y , LI Y B , et al . Intelligent service-oriented optical network based on fine-grain OTN and edge-cloud coordination [C ] // Proceedings of the 2023 IEEE Future Networks World Forum (FNWF) . Piscataway : IEEE Press , 2023 : 1 - 5 .
YU T K , YANG H , YAO Q Y , et al . Intelligent service-oriented graph representation-assisted high-efficiency fine grain grooming for OSU-based OTN [C ] // Proceedings of the 2024 22nd International Conference on Optical Communications and Networks (ICOCN) . Piscataway : IEEE Press , 2024 : 1 - 3 .
LIANG D , BAI Y W , ZHANG P , et al . Research method for redundant optical transmission network mapping based on SDH/OTN [C ] // Proceedings of the 2024 6th International Conference on Internet of Things, Automation and Artificial Intelligence (IoTAAI) . Piscataway : IEEE Press , 2024 : 407 - 410 .
YIN S , JIAO Y R , YOU C Y , et al . Reliable adaptive edge-cloud collaborative DNN inference acceleration scheme combining computing and communication resources in optical networks [J ] . Journal of Optical Communications and Networking , 2023 , 15 ( 10 ): 750 - 764 .
0
浏览量
12
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构