
浏览全部资源
扫码关注微信
华东交通大学电气与自动化工程学院,江西 南昌 330013
[ "丁青锋(1980- ),男,博士,华东交通大学电气与自动化工程学院教授、博士生导师,主要研究方向为大规模MIMO技术、智能电网通信、轨道无线通信等。" ]
[ "徐战波(2000- ),男,华东交通大学电气与自动化工程学院硕士生,主要研究方向为OTFS调制技术和智能超表面等。" ]
收稿日期:2024-11-25,
修回日期:2025-03-09,
纸质出版日期:2025-06-20
移动端阅览
丁青锋,徐战波.高铁场景下多用户OTFS系统的上行多址传输方案[J].电信科学,2025,41(06):48-56.
DING Qingfeng,XU Zhanbo.Uplink multiple access transmission scheme for multi-user OTFS systems in high-speed rail scenarios[J].Telecommunications Science,2025,41(06):48-56.
丁青锋,徐战波.高铁场景下多用户OTFS系统的上行多址传输方案[J].电信科学,2025,41(06):48-56. DOI: 10.11959/j.issn.1000-0801.2025112.
DING Qingfeng,XU Zhanbo.Uplink multiple access transmission scheme for multi-user OTFS systems in high-speed rail scenarios[J].Telecommunications Science,2025,41(06):48-56. DOI: 10.11959/j.issn.1000-0801.2025112.
针对高速铁路快速移动所引起的高多普勒频移进而可实现速率受限的问题,基于时延分多址和多普勒分多址技术,提出了高铁场景多用户上行链路的正交时频空间(orthogonal time frequency space,OTFS)多址传输方案。首先,基于高铁场景建立OTFS多址的多用户系统模型;其次,在基站处将串行干扰消除应用于上行链路传输,利用多用户之间的信号差异消除干扰,实现对用户信号的正确检测;最后,根据互信息定理和迹运算的性质推导可实现速率的闭式表达式。仿真结果表明,相比于传统的多址传输方案,所提方案能更好地进行资源分配和抵抗多普勒频移,满足高速场景下车地通信上行传输的可实现速率需求。
To address the high Doppler frequency shift and thus achievable rate limitation caused by rapid movement of the train
an orthogonal time frequency space (OTFS) multiple access transmission scheme was proposed based on the delay division multiple access and Doppler division multiple access techniques for the multi-user uplink in high-speed railway scenario. Firstly
a multi-user system model for OTFS multiple access was established based on the high-speed rail scenario. Secondly
the serial interference cancellation was applied to the uplink transmission at the base station to eliminate the interference by using the signal difference between the multiple users and achieve the correct detection of the user signals. Finally
the closed-form expression for the achievable rate was derived based on the mutual information theorem and the nature of the trace operation. Simulation results show that the proposed scheme has better performance of resources allocation and resistance to Doppler shift than the traditional multiple-access transmission scheme
which meets the achievable rate requirement of uplink vehicle-to-infrastructure communication in high-speed scenarios.
钟章队 , 官科 , 陈为 , 等 . 铁路新一代移动通信的挑战与思考 [J ] . 中兴通讯技术 , 2021 , 27 ( 4 ): 44 - 50 .
ZHONG Z D , GUAN K , CHEN W , et al . Challenges and perspective of new generation of railway mobile communications [J ] . ZTE Technology Journal , 2021 , 27 ( 4 ): 44 - 50 .
闫莉 , 方旭明 , 李毅 , 等 . 面向高铁毫米波通信智能资源管理研究综述 [J ] . 电子与信息学报 , 2023 , 45 ( 8 ): 2806 - 2817 .
YAN L , FANG X M , LI Y , et al . Overview on intelligent wireless resource management of millimeter wave communications under high-speed railway [J ] . Journal of Electronics & Information Technology , 2023 , 45 ( 8 ): 2806 - 2817 .
HE D P , AI B , GUAN K , et al . Channel measurement, simulation, and analysis for high-speed railway communications in 5G millimeter-wave band [J ] . IEEE Transactions on Intelligent Transportation Systems , 2018 , 19 ( 10 ): 3144 - 3158 .
蒋占军 , 刘庆达 . 高速移动通信系统中 OTFS 信道估计算法研究 [J ] . 电子与信息学报 , 2021 , 43 ( 10 ): 2878 - 2885 .
JIANG Z J , LIU Q D . Study on OTFS channel estimation algorithms in high-speed mobile communication systems [J ] . Journal of Electronics & Information Technology , 2021 , 43 ( 10 ): 2878 - 2885 .
AI B , MOLISCH A F , RUPP M , et al . 5G key technologies for smart railways [J ] . Proceedings of the IEEE , 2020 , 108 ( 6 ): 856 - 893 .
HADANI R , RAKIB S , TSATSANIS M , et al . Orthogonal time frequency space modulation [C ] // Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway : IEEE Press , 2017 : 1 - 6 .
MOHAMMED S K . Time-domain to delay-Doppler domain conversion of OTFS signals in very high mobility scenarios [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 6 ): 6178 - 6183 .
HARSHAVARDHAN G , BHAT V S , CHOCKALINGAM A . RIS-aided OTFS modulation in high-Doppler channels [C ] // Proceedings of the 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) . Piscataway : IEEE Press , 2022 : 409 - 415 .
龙航 , 王森 , 徐林飞 , 等 . OTFS 技术研究现状与展望 [J ] . 电信科学 , 2021 , 37 ( 9 ): 57 - 63 .
LONG H , WANG S , XU L F , et al . OTFS technology research and prospect [J ] . Telecommunications Science , 2021 , 37 ( 9 ): 57 - 63 .
WEI Z Q , YUAN W J , LI S Y , et al . Orthogonal time-frequency space modulation: a promising next-generation waveform [J ] . IEEE Wireless Communications , 2021 , 28 ( 4 ): 136 - 144 .
BUZZI S , CAIRE G , COLAVOLPE G , et al . LEO satellite diversity in 6G non-terrestrial networks: OFDM vs. OTFS [J ] . IEEE Communications Letters , 2023 , 27 ( 11 ): 3013 - 3017 .
BALAN S , JOSHI S . A study of high-speed railway communication channel models for OTFS-based systems [C ] // Proceedings of the 2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS) . Piscataway : IEEE Press , 2024 : 765 - 768 .
MA Y Y , MA G Y , AI B , et al . Characteristics of channel spreading function and performance of OTFS in high-speed railway [J ] . IEEE Transactions on Wireless Communications , 2023 , 22 ( 10 ): 7038 - 7054 .
LOPEZ L M W , BENGTSSON M . Achievable rates of orthogonal time frequency space (OTFS) modulation in high speed railway environments [C ] // Proceedings of the 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) . Piscataway : IEEE Press , 2022 : 982 - 987 .
MA Y Y , MA G Y , WANG N , et al . Enabling OTFS-TSMA for smart railways mMTC over LEO satellite: a differential Doppler shift perspective [J ] . IEEE Internet of Things Journal , 2023 , 10 ( 6 ): 4799 - 4814 .
KHAMMAMMETTI V , MOHAMMED S K . OTFS-based multiple-access in high Doppler and delay spread wireless channels [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 2 ): 528 - 531 .
TARIQ A , SARWAR M S , SHIN S Y . Orthogonal time frequency space index modulation based on non-orthogonal multiple access [C ] // Proceedings of the 2023 14th International Conference on Information and Communication Technology Convergence (ICTC) . Piscataway : IEEE Press , 2023 : 838 - 841 .
DING Z G . Robust beamforming design for OTFS-NOMA [J ] . IEEE Open Journal of the Communications Society , 2019 , 1 : 33 - 40 .
GE Y , DENG Q W , CHING P C , et al . OTFS signaling for uplink NOMA of heterogeneous mobility users [J ] . IEEE Transactions on Communications , 2021 , 69 ( 5 ): 3147 - 3161 .
DEKA K , THOMAS A , SHARMA S . OTFS-SCMA: a code-domain NOMA approach for orthogonal time frequency space modulation [J ] . IEEE Transactions on Communications , 2021 , 69 ( 8 ): 5043 - 5058 .
THOMAS A , DEKA K , RAVITEJA P , et al . Convolutional sparse coding based channel estimation for OTFS-SCMA in uplink [J ] . IEEE Transactions on Communications , 2022 , 70 ( 8 ): 5241 - 5257 .
李华 , 郝诗雅 , 巩彩红 , 等 . 面向6G的新型多址与波形技术 [J ] . 电信科学 , 2022 , 38 ( 10 ): 36 - 45 .
LI H , HAO S Y , GONG C H , et al . New multiple access and waveform technology for 6G [J ] . Telecommunications Science , 2022 , 38 ( 10 ): 36 - 45 .
CHONG R X , LI S Y , YUAN J H , et al . Achievable rate upper-bounds of uplink multiuser OTFS transmissions [J ] . IEEE Wireless Communications Letters , 2022 , 11 ( 4 ): 791 - 795 .
LI S Y , YUAN W J , WEI Z Q , et al . Cross domain iterative detection for orthogonal time frequency space modulation [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 4 ): 2227 - 2242 .
MA Y Y , MA G Y , WANG N , et al . OTFS-TSMA for massive Internet of things in high-speed railway [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 1 ): 519 - 531 .
WANG Z D , LIU Z P , SUN Z G , et al . BER performance analysis of OTFS systems with power allocation [J ] . China Communications , 2023 , 20 ( 1 ): 24 - 35 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621