
浏览全部资源
扫码关注微信
太原理工大学电子信息工程学院,山西 晋中 030600
[ "任航佳(1998- ),男,太原理工大学电子信息工程学院硕士生,主要研究方向为深度学习、计算机视觉和行人重识别。" ]
[ "梁凤梅(1969- ),女,博士,太原理工大学电子信息工程学院副教授、硕士生导师,主要研究方向为图像处理与图像通信、计算机视觉和智能信息处理。" ]
收稿日期:2024-12-14,
修回日期:2025-04-28,
纸质出版日期:2025-06-20
移动端阅览
任航佳,梁凤梅.双分支引导对比学习的无监督行人重识别[J].电信科学,2025,41(06):92-102.
REN Hangjia,LIANG Fengmei.Dual branch guided contrastive learning for unsupervised pedestrian re-identification[J].Telecommunications Science,2025,41(06):92-102.
任航佳,梁凤梅.双分支引导对比学习的无监督行人重识别[J].电信科学,2025,41(06):92-102. DOI: 10.11959/j.issn.1000-0801.2025125.
REN Hangjia,LIANG Fengmei.Dual branch guided contrastive learning for unsupervised pedestrian re-identification[J].Telecommunications Science,2025,41(06):92-102. DOI: 10.11959/j.issn.1000-0801.2025125.
现有无监督行人重识别算法使用残差网络,仅能提取粗略的全局特征,对细微的局部特征反映不足,且聚类方法生成的伪标签会引入噪声,影响特征判别。针对上述问题,提出一种双分支引导对比学习的方法。首先,引入一种有效的特征提取方式,将提取的特征分为全局分支和局部分支,提高对局部信息的利用;其次,通过全局特征和局部特征之间的一致性细化全局特征预测的伪标签,充分利用局部特征和整体特征之间的互补关系,有效降低伪标签聚类产生的噪声;最后,引入对比学习模块,将细化的标签进行对比学习,提高模型的鲁棒性。在Market1501、DukeMTMC-ReID以及MSMT17数据集上的实验结果验证了所提方法的有效性及高性能。
The current unsupervised pedestrian re-identification algorithms using residual networks can only extract rough global features
but it can’t adequately reflect subtle local features. In addition
the pseudo labels generated by clustering methods introduce noise
which will affect the performance of feature discrimination. A dual branch guided contrastive learning method was proposed. Firstly
an effective feature extraction method was introduced
which divided the extracted features into global branches and local branches to improve the utilization of local information. Secondly
the consistency between global and local features was proposed to refine the pseudo labels for global feature prediction
utilizing the complementary relationship between local and global features
thereby effectively reducing the noise generated by pseudo label clustering. Finally
a contrastive learning module was proposed to perform contrastive learning on refined labels and improve the robustness of the model. The experimental results on the Market1501
DukeMTMC-ReID
and MSMT17 datasets validate the effectiveness of the proposed method.
WU D , ZHENG S J , ZHANG X P , et al . Deep learning-based methods for person re-identification: a comprehensive review [J ] . Neurocomputing , 2019 , 337 : 354 - 371 .
许茹玉 , 吴琳 , 粟兴旺 , 等 . 多样细粒度特征与关系网络驱动的行人重识别 [J ] . 计算机工程与应用 , 2023 , 59 ( 19 ): 211 - 219 .
XU R Y , WU L , SU X W , et al . Person re-identification driven by diverse fine-grained features and relation network [J ] . Computer Engineering and Applications , 2023 , 59 ( 19 ): 211 - 219 .
王小檬 , 梁凤梅 . 融合有效掩膜和局部增强的遮挡行人重识别 [J ] . 计算机工程与应用 , 2024 , 60 ( 11 ): 156 - 164 .
WANG X M , LIANG F M . Effective mask and local enhancement for occluded person re-identification [J ] . Computer Engineering and Applications , 2024 , 60 ( 11 ): 156 - 164 .
LI M K , LI C G , GUO J . Cluster-guided asymmetric contrastive learning for unsupervised person re-identification [J ] . IEEE Transactions on Image Processing , 2022 , 31 : 3606 - 3617 .
ZHAO Y , SHU Q Y , SHI X , et al . Unsupervised person re-identification by dynamic hybrid contrastive learning [J ] . Image and Vision Computing , 2023 , 137 : 104786 .
YIN J H , ZHANG X Y , MA Z Y , et al . A real-time memory updating strategy for unsupervised person re-identification [J ] . IEEE Transactions on Image Processing , 2023 , 32 : 2309 - 2321 .
郑声晟 , 殷海兵 , 黄晓峰 , 等 . 基于GAN的无监督域自适应行人重识别 [J ] . 电信科学 , 2021 , 37 ( 2 ): 99 - 106 .
ZHENG S S , YIN H B , HUANG X F , et al . GAN-based unsupervised domain adaptive person re-identification [J ] . Telecommunications Science , 2021 , 37 ( 2 ): 99 - 106 .
TIAN Q , DU X X . A plug-and-play noise-label correction framework for unsupervised domain adaptation person re-identification [J ] . The Visual Computer , 2024 , 40 ( 6 ): 4493 - 4504 .
ZHONG Z , ZHENG L , LUO Z M , et al . Invariance matters: exemplar memory for domain adaptive person re-identification [C ] // Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2019 : 598 - 607 .
ESTER M , KRIEGEL H P , SANDER J , et al . A density-based algorithm for discovering clusters in large spatial databases with noise [C ] // Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD'96 . AAAI Press . 1996 : 226 - 231 .
HOTELLING H . A generalized T test and measure of multivariate dispersion [M ] // Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability . Oakland : University of California Press , 1951 : 23 - 42 .
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C ] // Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2016 : 770 - 778 .
TU Y P . Domain camera adaptation and collaborative multiple feature clustering for unsupervised person re-ID [C ] // Proceedings of the 3rd International Workshop on Human-Centric Multimedia Analysis . New York : ACM Press , 2022 : 51 - 59 .
CHO Y , KIM W J , HONG S , et al . Part-based pseudo label refinement for unsupervised person re-identification [C ] // Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2022 : 7298 - 7308 .
DAI Z Z , WANG G Y , YUAN W H , et al . Cluster contrast forUnsupervised person re-identification [C ] // Computer Vision-ACCV 2022 . Cham : Springer Nature Switzerland , 2023 : 319 - 337 .
BERMAN M , JÉGOU H , VEDALDI A , et al . MultiGrain: a unified image embedding for classes and instances [J ] . arXiv preprint , 2019 , arXiv: 1902.05509 .
SZEGEDY C , VANHOUCKE V , IOFFE S , et al . Rethinking the inception architecture for computer vision [C ] // Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2016 : 2818 - 2826 .
HERMANS A , BEYER L , LEIBE B . In defense of the triplet loss for person re-identification [J ] . arXiv preprint , 2017 ,arXiv: 1703.07737 .
KINGMA D P , BA J , HAMMAD M M . Adam: a method for stochastic optimization [J ] . arXiv preprint , 2014 ,arXiv: 1412.6980 .
ZHENG L , SHEN L Y , TIAN L , et al . Scalable person re-identification: a benchmark [C ] // Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) . Piscataway : IEEE Press , 2015 : 1116 - 1124 .
RISTANI E , SOLERA F , ZOU R , et al . Performance measures and a data set for multi-target, multi-camera tracking [M ] // Computer Vision-ECCV 2016 Workshops . Cham : Springer International Publishing , 2016 : 17 - 35 .
WEI L H , ZHANG S L , GAO W , et al . Person transfer GAN to bridge domain gap for person re-identification [C ] // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway : IEEE Press , 2018 : 79 - 88 .
ZENG K W , NING M N , WANG Y H , et al . Hierarchical clustering with hard-batch triplet loss for person re-identification [C ] // Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2020 : 13657 - 13665 .
WANG D K , ZHANG S L . Unsupervised person re-identification via multi-label classification [C ] // Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2020 : 10981 - 10990 .
WANG Z D , ZHANG J W , ZHENG L , et al . CycAs: self-supervised cycle association for learning re-identifiable descriptions [M ] // Computer Vision–ECCV 2020 . Cham : Springer International Publishing , 2020 : 72 - 88 .
XUAN S Y , ZHANG S L . Intra-inter camera similarity for unsupervised person re-identification [C ] // Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2021 : 11926 - 11935 .
GE Y , CHEN D , ZHU F , et al . Self-paced contrastive learning with hybrid memory for domain adaptive object re-ID [J ] . arXiv preprint , 2020 , arXiv: 2006.02713 .
ZHANG X , GE Y X , QIAO Y , et al . Refining pseudo labels with clustering consensus over generations for unsupervised object re-identification [C ] // Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2021 : 3436 - 3445 .
SI T Z , HE F Z , ZHANG Z , et al . Hybrid contrastive learning for unsupervised person re-identification [J ] . IEEE Transactions on Multimedia , 2022 , 25 : 4323 - 4334 .
CHEN H , LAGADEC B , BREMOND F . ICE: inter-instance contrastive encoding for unsupervised person re-identification [C ] // Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV) . Piscataway : IEEE Press , 2021 : 14940 - 14949 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621