浏览全部资源
扫码关注微信
1. 重庆邮电大学移动通信重点实验室,重庆 400065
2. 四川省通信科研规划设计有限责任公司,四川 成都 610041
[ "赵书锋(1991−),男,重庆邮电大学移动通信重点实验室硕士生,主要研究方向为LTE-Hi系统、大规模MIMO系统等。" ]
[ "申滨(1978−),男,博士,重庆邮电大学移动通信重点实验室教授,主要研究方向为LTE、5G系统和认知无线电等。" ]
[ "杨芙蓉(1978−),女,四川省通信科研规划设计有限责任公司高级工程师,主要研究方向为移动通信系统信号处理等。" ]
网络出版日期:2017-07,
纸质出版日期:2017-07-20
移动端阅览
赵书锋, 申滨, 杨芙蓉. 大规模MIMO系统低复杂度混合迭代信号检测[J]. 电信科学, 2017,33(7):39-46.
Shufeng ZHAO, Bin SHEN, Furong YANG. Low complexity hybrid iterative algorithm based signal detection in massive MIMO system[J]. Telecommunications science, 2017, 33(7): 39-46.
赵书锋, 申滨, 杨芙蓉. 大规模MIMO系统低复杂度混合迭代信号检测[J]. 电信科学, 2017,33(7):39-46. DOI: 10.11959/j.issn.1000−0801.2017186.
Shufeng ZHAO, Bin SHEN, Furong YANG. Low complexity hybrid iterative algorithm based signal detection in massive MIMO system[J]. Telecommunications science, 2017, 33(7): 39-46. DOI: 10.11959/j.issn.1000−0801.2017186.
在大规模MIMO系统上行链路信号检测算法中,最小均方误差(MMSE)算法能获得接近最优的线性检测性能。但是,传统的MMSE检测算法涉及高维矩阵求逆运算,由于复杂度过高而使其在实际应用中难以快速有效地实现。基于最速下降(steepest descent,SD)算法和高斯—赛德尔(Gauss-Seidel,GS)迭代的方法提出了一种低复杂度的混合迭代算法,利用SD算法为复杂度相对较低的GS迭代算法提供有效的搜索方向,以加快算法收敛的速度。同时,给出了一种用于信道译码的比特似然比(LLR)近似计算方法。仿真结果表明,通过几次迭代,给出的算法能够快速收敛并接近MMSE检测性能,并将算法复杂度降低一个数量级,保持在O(K
2
)。
Among the uplink signal detection algorithms for massive MIMO systems
the minimum mean square error (MMSE) algorithm can achieve the near-optimal linear detection performance.However
conventional MMSE usually involves high complexity due to the required matrix inversion of large-size matrix
which makes it hard to implement in realistic applications.Based on joint steepest descent (SD) algorithm and Gauss-Seidel iteration
a low complexity hybrid iterative detection algorithm was proposed.The SD algorithm was employed to obtain an efficient searching direction for the following Gauss-Seidel to speed up convergence.Meanwhile
an approximated method was also proposed to compute the bit log-likelihood ratio (LLR) for soft channel decoding.Simulation results verify
that the proposed algorithm can converge rapidly and achieve its performance quite close to that of the MMSE algorithm with only a small number of iterations.Meanwhile
the complexity is reduced by an order of magnitude
which is kept consistently of O(K
2
).
GHOSH A , RATASUK R , MONDAL B , et al . LTE-advanced:next-generation wireless broadband technology [J ] . IEEE Wireless Communications , 2010 , 17 ( 3 ): 10 - 22 .
QIAN M , WANG Y , ZHOU Y , et al . A super base station based centralized network architecture for 5G mobile communication systems [J ] . Digital Communications & Networks , 2015 , 1 ( 2 ): 152 - 159 .
RUSEK F , PERSSON D , LAU B K , et al . Scaling up MIMO:opportunities and challenges with very large arrays [J ] . IEEE Signal Processing Magazine , 2012 , 30 ( 1 ): 40 - 60 .
LARSSON E , EDFORS O , TUFVESSON F , et al . Massive MIMO for next generation wireless systems [J ] . IEEE Communications Magazine , 2014 , 52 ( 2 ): 186 - 195 .
MARZETTA T L . Noncooperative cellular wireless with unlimited numbers of base station antennas [J ] . IEEE Transactions on Wireless Communications , 2010 , 9 ( 11 ): 3590 - 3600 .
阳析 , 金石 . 大规模 MIMO 系统传输关键技术研究进展 [J ] . 电信科学 , 2015 , 31 ( 5 ): 28 - 35 .
YANG X , JIN S . Overview of key technologies of transmission in massive MIMO system [J ] . Telecommunications Science , 2015 , 31 ( 5 ): 28 - 35 .
NGO H Q , LARSSON E G , MARZETTA T L . Energy and spectral efficiency of very large multiuser MIMO systems [J ] . IEEE Transactions on Communications , 2011 , 61 ( 4 ): 1436 - 1449 .
DAI L , WANG Z , YANG Z . Spectrally efficient time-frequency training ofdm for mobile large-scale MIMO systems [J ] . IEEE Journal on Selected Areas in Communications , 2013 , 31 ( 2 ): 251 - 263 .
王倩 , 华权 , 周应超 , 等 . 基于联合用户分组及天线选择的大规模MIMO波束成形 [J ] . 电信科学 , 2016 , 32 ( 8 ): 61 - 68 .
WANG Q , HUA Q , ZHOU Y C , et al . Joint user grouping and antenna selection based massive MIMO beamforming [J ] . Telecommunications Science , 2016 , 32 ( 8 ): 61 - 68 .
倪善金 , 赵军辉 . 5G无线通信网络物理层关键技术 [J ] . 电信科学 , 2015 , 31 ( 12 ): 48 - 53 .
NI S J , ZHAO J H . Key technologies in physical layer of 5G wireless communications network [J ] . Telecommunications Science , 2015 , 31 ( 12 ): 48 - 53 .
WU M , YIN B , WANG G , et al . Large-scale MIMO detection for 3GPP LTE:algorithms and FPGA implementations [J ] . IEEE Journal of Selected Topics in Signal Processing , 2014 , 8 ( 5 ): 916 - 929 .
TANG C , LIU C , YUAN L , et al . High precision low complexity matrix inversion based on newton iteration for data detection in the massive MIMO [J ] . IEEE Communications Letters , 2016 , 20 ( 3 ): 490 - 493 .
GAO X , DAI L , YUEN C , et al . Low-complexity MMSE signal detection based on Richardson method for large-scale MIMO systems [C ] // Vehicular Technology Conference,September 14-17,2014,Vancouver,BC,Canada . New Jersey:IEEE Press , 2014 : 1 - 5 .
GAO X , DAI L , HU Y , et al . Matrix inversion-less signal detection using SOR method for uplink large-scale MIMO systems [C ] // IEEE Global Communications Conference,October 22-24,2015,Qingdao,China . New Jersey:IEEE Press , 2015 : 3291 - 3295 .
HU Y , WANG Z , GAO L X , et al . Low-complexity signal detection using CG method for uplink large-scale MIMO systems [C ] // IEEE International Conference on Communication Systems,November 19-21,2014,Macau,China . New Jersey:IEEE Press , 2015 : 477 - 481 .
HAGEMAN L A . Iterative solution of large linear systems [M ] . Manhattan : Academic PressPress , 1971 : 9 - 22 .
DAI L , GAO X , SU X , et al . Low-complexity soft-output signal detection based on Gauss-Seidel method for uplink multiuserlarge-scale MIMO systems [J ] . IEEE Transactions on Vehicular Technology , 2014 , 64 ( 10 ): 4839 - 4845 .
WU M , YIN B , VOSOUGHI A , et al . Approximate matrix inversion for high-throughput data detection in the large-scale MIMO uplink [C ] // International Symposium on Circuits & Systems,May 19-23,2013,Beijing,China . New Jersey:IEEE Press , 2013 : 2155 - 2158 .
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构