浏览全部资源
扫码关注微信
1. 东南大学移动通信国家重点实验室,江苏 南京210096
2. 台湾中山大学通讯工程研究所,台湾 高雄000800
3. 清华大学自动化系,北京100084
4. 华中科技大学武汉光电国家研究中心,湖北 武汉430074
[ "张静(1993−),女,东南大学移动通信国家重点实验室博士生,主要研究方向为5G移动通信物理层关键技术、机器学习等。" ]
[ "金石(1974−),男,东南大学移动通信国家重点实验室教授、博士生导师,主要研究方向为移动通信理论与关键技术、物联网理论与关键技术以及人工智能在无线通信中的应用等。" ]
[ "温朝凯(1976−),男,台湾中山大学通讯工程研究所教授,主要研究方向为无线通信、最优化理论和机器学习等。" ]
[ "高飞飞(1980−),男,清华大学自动化系信息处理研究所副教授,主要研究方向为通信信号处理、大规模多天线技术以及智能通信。" ]
[ "江涛(1970−),男,华中科技大学武汉光电国家研究中心教授、博士生导师,主要研究方向为5G移动通信理论与关键技术、天地一体化信息网络、深海目标探测等。" ]
网络出版日期:2018-08,
纸质出版日期:2018-08-20
移动端阅览
张静, 金石, 温朝凯, 等. 基于人工智能的无线传输技术最新研究进展[J]. 电信科学, 2018,34(8):46-55.
Jing ZHANG, Shi JIN, Chaokai WEN, et al. An overview of wireless transmission technology utilizing artificial intelligence[J]. Telecommunications science, 2018, 34(8): 46-55.
张静, 金石, 温朝凯, 等. 基于人工智能的无线传输技术最新研究进展[J]. 电信科学, 2018,34(8):46-55. DOI: 10.11959/j.issn.1000−0801.2018234.
Jing ZHANG, Shi JIN, Chaokai WEN, et al. An overview of wireless transmission technology utilizing artificial intelligence[J]. Telecommunications science, 2018, 34(8): 46-55. DOI: 10.11959/j.issn.1000−0801.2018234.
智能通信被认为是5G之后无线通信发展的主流方向之一,其基本思想是将人工智能引入无线通信系统的各个层面,实现无线通信与人工智能技术的有机融合。目前,该方面研究正在向物理层快速推进,无线传输技术与人工智能的融合还处于初步探索阶段。面向基于人工智能的无线传输关键技术,从信道估计、信号检测、信道状态信息反馈与重建、信道解码、端到端的无线通信系统方面展开了详细介绍,阐述了近年来国际学术界在该方向的最新研究进展,并在此基础上对利用人工智能的无线传输技术发展趋势进行了进一步展望。
Intelligent communication is considered to be one of themainstream directions in the development of wireless communications after 5G.Its basic idea is to introduce artificial intelligence into all aspects of wireless communication systems
realizing the significant integration of wireless communication and artificial intelligence technology.At present
the research in this field is advancing to the physi cal layer.The combination of wireless transmission and deep learning is also in the preliminary exploration stage.Key technologies of wireless physi cal layer based on deep learning were introduced in detail from the aspects of channel estimation
signal detection
feedback and reconstruction of channel state information
channel decoding
end-to-end wireless communication systems
the latest research progress of international academic circles in recent years was presented.On this basis
the development trend in the future was preliminarily forecasted.
倪善金 , 赵军辉 . 5G无线通信网络物理层关键技术 [J ] . 电信科学 , 2015 , 31 ( 12 ): 40 - 45 .
NI S J , ZHAO J H . Key technologies in physi cal layer of 5G wireless communications network [J ] . Telecommunications Science , 2015 , 31 ( 12 ): 40 - 45 .
MAO Q , HU F , HAO Q . Deep learning for intelligent wireless networks:a comprehensive survey [J ] . IEEE Communications Surveys & Tutorials , 2018 ( 99 ):1.
O’SHEA T J , HOYDIS J . An introduction to deep learning foRthe physi cal layer [J ] . arXiv:1702.008320 , 2017
WANG T Q , WEN C K , WANG H , et al . Deep learning for wireless physi cal layer:opportunities and challenges [J ] . China Communications , 2017 , 14 ( 11 ): 92 - 111 .
HE H , WEN C K , JIN S , et al . Deep learning-based channel estimation for beamspacemmWavemassive MIMO systems [J ] . IEEE Wireless Communications Letters , 2018 ( 99 ):1.
METZLER C A , MOUSAVI A , BARANIUK R G . Learned D-AMP:principled neural network based compressive image recovery [J ] . arXiv:1704.06625 , 2017
NEUMANN D , WIESE T , UTSCHICK W . Learning the MMSE channel estimator [J ] . IEEE Transactions on Signal Processing , 2018 , 66 ( 11 ): 2905 - 2917 .
YE H , LI G Y , JUANG B H F . Power of deep learning for channel estimation and signal detection in OFDM systems [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 1 ): 114 - 117 .
SAMUEL N , DISKIN T , WIESEL A . Deep MIMO detection [C ] // IEEE International Workshop on Signal Processing Advances in Wireless Communications,Jul 3-6,2017,Sapporo,Japan . Piscataway:IEEE Press , 2017 .
HE H , WEN C K , JIN S , et al . Amodel-driven deep learning network for MIMO detection [C ] // Submitted to the 6th IEEE Global Conference on Signal and Information Processing,Nov 26-29,2018,Anaheim,USA . Piscataway:IEEE Press , 2018 .
WEN C K , SHIH W T , JIN S . Deep learning formassive MIMO CSI feedback [J ] . IEEE Wireless Communications Letters , 2018 ( 99 ).
O'SHEA T J , ERPEK T , CLANCY T C . Deep learning based MIMO communications [J ] . arXiv:1707.07980 , 2017
WANG T Q , WEN C K , JIN S , et al . Deep learning-based CSI feedback approach foRtime-varyingmassive MIMO channels [J ] . arXiv:1807.11673 , 2018
CAMMERER S , HOYDIS J , BRINK S T . On deep learning-based channel decoding [C ] // 51st Annual Conference on Information Sciences and Systems,March 22-24,2017,Baltimore,MD,USA.[S.l.:s.n] . 2017 .
CAMMERER S , HOYDIS J , BRINK S T . S caling deep learning-based decoding of polar codes via partitioning [J ] . arXiv:1702.06901 , 2017
LIANG F , SHEN C , WU F . An iterative BP-CNNarchitecture for channel decoding [J ] . IEEE Journal of Selected Topics in Signal Processing , 2018 , 12 ( 1 ): 144 - 159 .
NACHMANI E , BEERY Y , BURSHTEIN D . Learning to decode linear codes using deep learning [C ] // 54th Annual Allerton Conference on Communication,Control,and Computing,Sept 27-31,2016,Monticello,Illinois,USA.[S.l.:s.n] . 2016 .
NACHMANI E , MARCIANO E , LUGOSCH L , et al . Deep learningmethods for improved decoding of linear codes [J ] . IEEE Journal of Selected Topics in Signal Processing , 2018 , 12 ( 1 ): 119 - 131 .
DÖRNER S , CAMMERER S , HOYDIS J , et al . Deep learning based communication oveRthe air [J ] . IEEE Journal of Selected Topics in Signal Processing , 2018 , 12 ( 1 ): 132 - 143 .
YE H , LI G Y , JUANG B H F , et al . Channel agnostic end-to-end learning based communication systems with conditional GAN [J ] . arXiv:1807.00447 , 2018
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构