浏览全部资源
扫码关注微信
1. 浙江工业职业技术学院 绍兴 312000
2. 浙江大学 杭州 315580
[ "胡敏,女,硕士,浙江工业职业技术学院副教授,主要研究方向为电气自动化技术应用、计算机控制应用。" ]
[ "黄旭伟,男,硕士,浙江工业职业技术学院副教授,主要研究方向为自动化技术应用。" ]
[ "龙丹,男,浙江大学博士研究生,主要研究方向为图像处理和分析。" ]
[ "沈才樑,男,浙江工业职业技术学院副教授,主要研究方向为视频与图像处理。" ]
网络出版日期:2013-02,
纸质出版日期:2013-02-15
移动端阅览
胡敏, 黄旭伟, 龙丹, 等. 基于树状稀疏模型的视觉传感器网络图像数据重构[J]. 电信科学, 2013,29(2):64-69.
Min Hu, Xuwei Huang, Dan Long, et al. Image Reconstruction Algorithm Based on Tree Sparsity Model for Visual Sensor Network[J]. Telecommunications science, 2013, 29(2): 64-69.
胡敏, 黄旭伟, 龙丹, 等. 基于树状稀疏模型的视觉传感器网络图像数据重构[J]. 电信科学, 2013,29(2):64-69. DOI: 10.3969/j.issn.1000-0801.2013.02.011.
Min Hu, Xuwei Huang, Dan Long, et al. Image Reconstruction Algorithm Based on Tree Sparsity Model for Visual Sensor Network[J]. Telecommunications science, 2013, 29(2): 64-69. DOI: 10.3969/j.issn.1000-0801.2013.02.011.
针对现有压缩感知算法无法有效利用视觉传感器网络中图像数据相关性的问题,提出一种基于树状稀疏模型的视觉传感器网络数据压缩感知算法。在分析图像数据小波域稀疏特性的基础上,构建了一种视觉传感器网络图像数据的树状稀疏模型,进而针对此模型设计一种新的压缩感知重构算法。理论分析和实验结果表明,相比于传统图像数据压缩感知算法,该算法可有效利用图像数据相关性减少准确重构图像数据所需的测量值,降低视觉传感器网络数据传输能耗。
A tree sparsity mode1 based image compressed sensing(CS)algorithm was proposed to efficiently explore the correlation in visua1 sensor networks(VSN)data. Based on the analysis of wavelet sparsity,a tree sparsity mode1 for VSN image was established and a new CS recovery algorithm for this mode1 was proposed. Analysis and experimenta1 results demonstrate that the proposed algorithm can significantly reduce the measurement for the accurate recovery,and subsequently 1ower energy consumption of data traffic in VSN.
Misra S , Reisslein M , Xue G . A survey of multimedia streaming in wireless sensor networks . IEEE Communications Surveys and Tutorials , 2008 ( 10 ): 18 ~ 39
Charfi Y , Wakamiya N , Murata M . Cha11enging issues in visua1 sensor networks . Technica1 Report,Advanced Network Architecture Laboratory,Osaka University , 2007
Donoho D . Compressed sensing . IEEE Transactions on Information Theory , 2006 , 52 ( 4 ): 1289 ~ 1306
Candes E , Romberg J , Tao T . Robust uncertainty principles:exact signa1 reconstruction from highly incomplete frequency information . IEEE Transactions on Information Theory , 2006 , 52 ( 4 ): 489 ~ 509
石光明 , 刘丹华 , 高大化 等 . 压缩感知理论及其研究进展 . 电子学报 , 2009 , 37 ( 5 ): 1070 ~ 1081
Chen S , Donoho D , Saunders M . Atomic decomposition by basis pursuit . SIAM Journa1 on Scientific Computing , 1999 , 20 ( 1 ): 33 ~ 61
Kim S , Koh K , Lustig M , et al . An interior-point method for 1arge-scale 11 regularized 1east squares . IEEE Journa1 of Selected Topics in Signa1 Processing , 2007 , 1 ( 4 ): 606 ~ 617
Tropp J , Gi11bert A . Signa1 recovery from random measurements via orthogona1 matching pursuit . IEEE Transactions on Information Theory , 2007 , 53 ( 12 ): 4655 ~ 4666
Donoho D L , Tsaig Y , Drori I , et al . Sparse solution of underdetermined 1inear equations by stage-wise orthogona1 matching pursuit . Technica1 Report , Mar 2006
Dai W , Milenkovic O . Subspace pursuit for compressive sensing:closing the gap between performance and complexity . IEEE Transactions on Information Theory , 2009 , 55 ( 5 ): 2230 ~ 2249
Neede11 D , Tropp J . CoSaMP:iterative signa1 recovery from incomplete and inaccurate samples . Applied and Computationa1 Harmonic Analysis , 2009 , 26 ( 3 ): 301 ~ 321
Blumensath T , Davies M . Sampling theorems for signals from the union of finite-dimensiona1 1inear subspaces . IEEE Transactions on Information Theory , 2009 , 55 ( 4 ): 1872 ~ 1882
Brown G , Shubert B . On random binary trees . Mathematics of Operations Research , 1984 , 9 ( 1 ): 43 ~ 65
0
浏览量
427
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构