浏览全部资源
扫码关注微信
1. 中国电信股份有限公司广东研究院 广州 510630
2. 华南理工大学经济与贸易学院 广州 510006
3. 中山大学软件研究所 广州 510275
4. 中国电信集团公司 北京100032
[ "陈康,男,硕士,中国电信股份有限公司广东研究院工程师,主要研究方向为基于位置的服务技术。" ]
[ "黄晓宇,男,华南理工大学讲师,主要研究方向为机器学习与数据挖掘。" ]
[ "王爱宝,男,博士,中国电信集团公司技术部高级业务督导,目前主要从事移动互联网、位置服务、社会化网络等领域的研究工作。" ]
[ "陶彩霞,女,硕士,中国电信股份有限公司广东研究院高级工程师,主要研究方向为移动互联网、大数据和个性化推荐技术。" ]
[ "关迎晖,女,硕士,现就职于中国电信股份有限公司广东研究院,主要研究方向为移动互联网应用。" ]
[ "李磊,男,中山大学教授、博士生导师,主要研究方向为人工智能、智能规划与机器学习理论。" ]
网络出版日期:2013-04,
纸质出版日期:2013-04-20
移动端阅览
陈康, 黄晓宇, 王爱宝, 等. 基于位置信息的用户行为轨迹分析与应用综述[J]. 电信科学, 2013,29(4):118-124.
Kang Chen, Xiaoyu Huang, Aibao Wang, et al. Analysis and Application Review of User Behavior Trajectory Based on the Location Information[J]. Telecommunication science, 2013, 29(4): 118-124.
陈康, 黄晓宇, 王爱宝, 等. 基于位置信息的用户行为轨迹分析与应用综述[J]. 电信科学, 2013,29(4):118-124. DOI: 10.3969/j.issn.1000-0801.2013.04.023.
Kang Chen, Xiaoyu Huang, Aibao Wang, et al. Analysis and Application Review of User Behavior Trajectory Based on the Location Information[J]. Telecommunication science, 2013, 29(4): 118-124. DOI: 10.3969/j.issn.1000-0801.2013.04.023.
近年来,随着空间数据采集技术的发展,基于位置信息的用户行为轨迹分析及其应用的研究引起了广泛关注,并已展现了良好的商业前景。根据应用的领域,对这一问题的研究主要可以分为智能交通应用和用户行为分析应用两种类型。本文分别对这两类应用的研究现状进行了较为全面的总结,对每类应用,都概括了在相关领域中研究的典型问题和代表性结果。最后,讨论了在用户行为轨迹分析研究中的主要技术特点,并对未来的研究工作进行了展望。
With the rapid development of spatial data collection technology in recent years,many efforts have been devoted to the research on trajectory based user behavior analysis and its applications,due to their academic interests;they also show promising business opportunities.From the application aspect,in principle,current issues in trajectory based user behavior analysis can be classified into two major categories:the intelligent transportation applications and the user behavior based applications.The state-of-the-art progress of these categories were reviewed.For each category,its main focus and related achievements were discussed.What’s more,the main technical characteristics of the means used were also summarized in current studies.
Minakakis R . Evolution of mobile location-based services . Communication of the ACM , 2003 , 46 ( 12 )
Quddus M A , Ochieng W Y , Noland R B . Current mapmatching algorithms for transport applications:state-of-the art and future research directions . Transportation Research Part C , 2007 ( 15 ): 312 ~ 328
Ge Y , Xiong H , Liu C , et al . A taxi driving fraud detection system . Proceedings of the 11th IEEE International Conference on Data Mining(ICDMˊ11) , Vancouver,Canada , 2011 : 181 ~ 190
Zhang D Q , Li N , Zhou Z H , et al . iBAT:detecting anomalous taxi trajectories from GPS traces . Proceedings of the 13th ACM International Conference on Ubiquitous Computing(UbiComp’ 11) , Beijing,China , 2011 : 99 ~ 108
Chen C , Zhang D Q , Castro P S , et al . Real-time detection of anomalous taxi trajectories from GPS traces . Proceedings of the 8th Annual International ICST Conference on Mobile and Ubiquitous System(MobiQuitous’11) , Copenhagen,Denmark , 2011 : 63 ~ 74
Zhang J P , Wang F Y , Wang K F , et al . Data-driven intelligent transportation systems:a survey.IEEE Transations on Intelligent Transportation Systems , 2011 , 12 ( 4 )
Cao L , Krumm J . From GPS traces to a routable road map . 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems(ACM SIGSPATIAL GIS 2009) , Seattle,WA , 2009 : 3 ~ 12
Chen Y H , Krumm J . Probabilistic modeling of traffic lanes from GPS traces . 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems(ACM SIGSPATIAL GIS 2010) , San Jose,CA,USA , 2010
Gonzalez H , Han J W , Li X L , et al . Adaptive fastest path computation on a road network:a traffic mining approach . VLDB 2007 , Vienna,Austria , 2007
Yuan J , Zheng Y , Zhang C Y , et al . T-drive:driving directions based on taxi trajectories . Proceedings of ACM SIGSPATIAL 2010 , New York,USA , 2010
Bastani F . A greener transportation mode:flexible routes discovery from GPS trajectory data . GIS 2011 , San Jose,California,USA , 2011
Zheng Y , Liu L , Wang L H , et al . Learning transportation mode from raw GPS data for geographic applications on the web . Proceedings of International Conference on World Wild Web (WWW 2008) , Beijing,China , 2008
He H B , Garcia E A . Learning from imbalanced data . IEEE Transactions on Knowledge and Data Engineering , 2009 , 21 ( 9 )
Leon Stenneth , Ouri Wolfson , Philip S Yu , et al . Transportation mode detection using mobile phones and GIS information . GIS 2010 , San Jose,CA,USA , 2010
Mikkel Baun Kjargaard , Martin Wirz , Daniel Roggen , et al . Detecting pedestrian flocks by fusion of multi-modal sensors in mobile phones . UbiComp 2012 , Pittsburgh,Pennsylvania,United States , 2012
PabloBellver A K . Extracting patterns from location history . GIS 2011 , San Jose,California,USA , 2011
Ying J C , Lee W C , Weng T C , et al . Semantic trajectory mining for location prediction . GIS 2011 , San Jose,California,USA , 2011
Zheng J C , Lionel M Ni . An unsupervised framework for sensing individual and cluster behavior patterns from human mobile data . UbiComp 2012 , Pittsburgh,Pennsylvania,United States , 2012
David M , Andrew Y , Michael I . Latent dirichlet allocation . Journal of Machine Learning Research 3 ( 4 - 5 ): 993 ~ 1022
Yuan J , Zheng Y , Xie X . Discovering regions of different functions in a city using human mobility and POIs . KDD 2012 , Beijing,China , 2012
Leskovec J , Horvitz E . Planetary-scale views on a large instant-messaging network . Proceedings of the 17th International Conference on World Wide Web , New York,USA , 2008
Leskovec J , Kleinberg J , Faloutsos C . Graphs over time:densification laws,shrinking diameters and possible explanations . KDD 2005 , Chicago,IL,USA , 2005
David J Crandalla , Backstromb L , Cosleyc D , et al . Inferring social ties from geographic coincidences . Proceedings of the National Academy of Sciences of the United States of America , 2010
Cho E , Myers S A , Leskovec J . Friendship and mobility:user movement in location-based social networks . KDD 2011 , San Diego,CA,USA , 2011
Xiao X Y , Zheng Y , Luo Q , et al . Finding similar users using category-based location history . GIS 2010 , San Jose,CA , 2010
Huy Pham , Ling Hu , Cyrus Shahabi . Towards integrating real-world spatiotemporal data with social networks . GIS 2011 , San Jose,California,USA , 2011
Ye M , Yin P F , Wang-ChienLee . Location recommendation for location-based social networks . GIS 2010 , San Jose,CA,USA , 2010
Braga R B . A trajectory correlation algorithm based on users’ daily routines . GIS 2011 , San Jose,California,USA , 2011
A few useful things to know about machine learning . Communications of the ACM , 2012 , 55 ( 10 ): 78 ~ 87
0
浏览量
3890
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构