浏览全部资源
扫码关注微信
[ "陈暄,男,浙江工业职业技术学院讲师、系统分析师、信息系统项目管理师,主要研究方向为软件方法学、无线传感器网络。" ]
网络出版日期:2013-12,
纸质出版日期:2013-12-20
移动端阅览
陈暄. 无线传感器网络数据自适应稀疏变换[J]. 电信科学, 2013,29(12):60-64.
Xuan Chen. Adaptive Sparse Transform for Wireless Sensor Network Data[J]. Telecommunications science, 2013, 29(12): 60-64.
陈暄. 无线传感器网络数据自适应稀疏变换[J]. 电信科学, 2013,29(12):60-64. DOI: 10.3969/j.issn.1000-0801.2013.12.010.
Xuan Chen. Adaptive Sparse Transform for Wireless Sensor Network Data[J]. Telecommunications science, 2013, 29(12): 60-64. DOI: 10.3969/j.issn.1000-0801.2013.12.010.
针对无线传感器网络节点位置移动及传输干扰等因素可导致数据稀疏结构改变的问题,提出一种基于字典学习的无线传感器网络自适应稀疏变换方法。根据网络数据稀疏结构变化,自适应构建最优稀疏变换基,同时在字典学习问题中引入无线传感器网络数据稀疏基的可压缩约束,以满足无线传感器网络中大规模数据处理特点及稀疏变换的高实时性要求。理论分析和仿真结果表明,所提算法可有效提高无线传感器网络数据稀疏变换算法的顽健性,同时具有良好的实时性。
Aiming at the change of sparse structure introduced by mobility of the wireless sensor network(WSN) nodes and noise in data transmission
an adaptive sparse transform method based on dictionary learning (DL)for WSN data was proposed. The optimum sparse basis can be adaptively constructed according to the change of sparse structure
and the compressibility of WSN data basis was introduced to DL to satisfy the real time requirement for large-scale data processing. Analysis and experimental results demonstrate that the proposed algorithm can significantly improve the robustness and the real time performance of WSN data sparse transform.
Akyildiz I F , Su W , Sankarasubramaniam Y . A survey on sensor networks . IEEE Communications Magazine , 2002 , 40 ( 8 )
李建中 , 高宏 . 无线传感器网络的研究进展 . 计算机研究与发展 , 2008 , 45 ( 1 )
Candes E , Romberg J Tao T . Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information . IEEE Transactions on Information Theory , 2006 , 52 (( 4 )
焦李成 , 杨淑媛 , 刘芳 等 . 压缩感知回顾与展望 . 电子学报 , 2011 , 20 ( 7 )
戴海琼 , 付长军 , 季向阳 . 压缩感知研究 . 计算机学报 , 2011 , 54 ( 3 )
Tosic I , Frossard P . Dictionary learning . IEEE Transactions on Signal Processing , 2011 , 28 (( 2 )
Aharon M , Elad E , Bruckstein A M . K-SVD: an algorithm for designining of overcomplete dictionaries for sparse representation . IEEE Transactions on Signal Processing , 2006 , 54 (( 11 )
Kreutz-Delgado K , Murray J F , Rao B D , et al . Dictionary learning algorithms for sparse representation . Neural Computation , 2003 , 15 (( 2 )
Skretting K , Engan K . Recursive least squares dictionary learning algorithm . IEEE Transactions on Signal Processing , 2010 , 58 (( 4 )
Yaghoobi M , Blumensath T , Davies M . Dictionary learning forsparse approximations with the majorization method . IEEE Transactions on Signal Processing , 2009 , 57 (( 6 )
Gowreesunker B V , Tewfik A H . Learning sparse representation using iterative subspace identification . IEEE Transactions on Signal Processing , 2010 , 58 (( 6 )
Candes E , Romberg J , Tao T . Stable signal recovery from incomplete and inaccurate measurements . Communications on Pure and Applied Mathematics , 2006 , 59 (( 8 )
Donoho D L , Johnstone J M . Ideal spatial adaptation by wavelet shrinkage . Biometrika , 1994 , 81 (( 3 )
Needell D , Tropp J . CoSaMP: iterative signal recovery from incomplete and inaccurate samples . Applied and Computational Harmonic Analysis , 2009 , 26 (( 3 )
0
浏览量
465
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构