浏览全部资源
扫码关注微信
1. 公安部第三研究所 上海201204
2. 华东师范大学 上海200241
[ "吴松洋,男,博士,公安部第三研究所信息网络安全技术研发中心副主任、助理研究员,主要研究方向为网络安全和云计算。" ]
[ "张熙哲,男,博士,公安部第三研究所信息网络安全技术研发中心助理研究员,主要研究方向为虚拟机安全体系。" ]
[ "王旭鹏,男,硕士,公安部第三研究所信息网络安全技术研发中心实习研究员,主要研究方向为海量数据处理。" ]
[ "李祥学,男,博士,华东师范大学副教授,主要研究方向为密码学。" ]
网络出版日期:2014-01,
纸质出版日期:2014-01-20
移动端阅览
吴松洋, 张熙哲, 王旭鹏, 等. 基于Hadoop的高效分布式取证:原理与方法[J]. 电信科学, 2014,30(1):31-38.
Songyang Wu, Xizhe Zhang, Xupeng Wang, et al. An Efficient Distributed Forensic System Based on Hadoop:Principle and Method[J]. Telecommunications science, 2014, 30(1): 31-38.
吴松洋, 张熙哲, 王旭鹏, 等. 基于Hadoop的高效分布式取证:原理与方法[J]. 电信科学, 2014,30(1):31-38. DOI: 10.3969/j.issn.1000-0801.2014.01.005.
Songyang Wu, Xizhe Zhang, Xupeng Wang, et al. An Efficient Distributed Forensic System Based on Hadoop:Principle and Method[J]. Telecommunications science, 2014, 30(1): 31-38. DOI: 10.3969/j.issn.1000-0801.2014.01.005.
随着信息技术的发展以及各种智能设备的普及,设备的平台多样化使得现有电子数据勘查取证分析装备已不能满足网络和存储技术所需要的高速数据镜像存储和海量数据相关性分析等要求,并表现出操作复杂、效率低等缺陷。设计并实现了一种高效的基于Hadoop的分布式取证系统,它能够支持多介质并行取证的工作场景,并通过调度控制服务将不同的证据介质中的数据存储到不同的分布式数据存储服务器上,每个取证任务运行时都可以独占一个取证介质,从而实现多介质的并行取证分析。实验数据显示,搜索一个2~4GB的文本数据的响应时间可以达到仅0.1s。
With the development and popularization of information technology and intelligence device
the diversity of different device making forensic analysis of existing equipment cannot meet today's networking and storage technology requirements
and exhibit complex operation
low efficiency
on high speed disk image storage and massive data correlation. An efficient distributed forensics system based on Hadoop technique
which can support multiple concurrent media scene forensics work
was designed and implemented
and through the dispatch control services would be evidence of different data storage media to a different distributed data storage server
each forensic task runtime could monopolize a forensic medium to achieve a parallel multiple media forensic analysis. Data show that responsible acknowledge duration will be 0.1 s for a 2~4 GB text file.
Wang X Q . How to discover the truth in data . China Information Security , 2009 ( 11 ): 23 ~ 24
Intel Corporation . Understanding the Flash Translation Layer (FTL)Specification , December 1998
King C , Vidas T . Empirical analysis of solid state disk data retention when used with contemporary operating systems . Digital Investigation , 2011 ( 8 ): 111 ~ 117
Wikipedia Apache Hadoop . http://en.wikipedia.org/wiki/Hadoop http://en.wikipedia.org/wiki/Hadoop , 2013
Analyzing big data with Hadoop, decorated a new history . http://www.bloter.net/archives/68650 http://www.bloter.net/archives/68650 , 2011
Zhou W C , Tao T , Boon T L , et al . Declarative secure distributed information systems . Computer Languages,Systems and Structures , 2013 , 39 ( 1 ): 1 ~ 24
Jens D , Jorge-Arnulfo . Efficient big data processing in Hadoop MapReduce . Proceedings of the VLDB Endowment , 2012 , 5 ( 12 ): 2014 ~ 2015
Prashant S , Kamalakar K . A multi-agent simulation framework on small Hadoop cluster . Engineering Applications of Artificial Intelligence , 2011 , 24 ( 7 ): 1120 ~ 1127
Wang S G , Su W , Zhu X L , et al . A Hadoop-based approach for efficient web service management . International Journal of Web and Grid Services , 2013 , 9 ( 1 ): 18 ~ 34
Wu T Y , Chen C Y , Kuo L S , et al . Cloud-based image processing system with priority-based data distribution mechanism , 2012 , 35 ( 15 ): 1809 ~ 1818
Zhao M , Mao R , Jiang R . Transparent encryption file system model based on filter driver.Computer Engineering , 2009 ( 15 ): 51
Kathleen E , Shrideep P . On the performance of high dimensional data clustering and classification algorithms . Future Generation Computer Systems , 2013 , 29 ( 4 ): 1024 ~ 1034
Satish N S , Pelle J , Eero V . Adapting scientific computing problems to clouds using MapReduce . Future Generation Computer Systems , 2012 , 28 ( 10 ): 184 ~ 192
Jiang D W , Deng C O , Shi L , et a . The performance of MapReduce: an in-depth study . Proceedings of the VLDB Endowment , 2010 , 3 ( 1/2 ): 472 ~ 483
Erik R . The Odd couple: hardware and software . IEEE Micro , 2012 , 32 ( 4 ): 2 ~ 2
Neal L . Bringing big analytics to the masses . Computer , 2013 , 46 ( 1 ): 20 ~ 23
0
浏览量
590
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构