浏览全部资源
扫码关注微信
1. 杭州电子科技大学通信工程学院 杭州 310018
2. 中国电子科技集团第36研究所通信系统信息控制技术国家级重点实验室 嘉兴 314001
[ "赵知劲,女,博士,杭州电子科技大学教授、博士生导师,杭州电子科技大学通信工程学院党委书记,主要研究方向为认知无线电、通信信号处理、自适应信号处理等。" ]
[ "胡俊伟,男,杭州电子科技大学硕士生,主要研究方向为压缩感知在通信系统中的应用。" ]
网络出版日期:2014-03,
纸质出版日期:2014-03-20
移动端阅览
赵知劲, 胡俊伟. 稀疏度自适应的宽带压缩频谱感知方法[J]. 电信科学, 2014,30(3):100-104.
Zhijin Zhao, Junwei Hu. A Sparsity Adaptive Algorithm for Wideband Compressive Spectrum Sensing[J]. Telecommunications science, 2014, 30(3): 100-104.
赵知劲, 胡俊伟. 稀疏度自适应的宽带压缩频谱感知方法[J]. 电信科学, 2014,30(3):100-104. DOI: 10.3969/j.issn.1000-0801.2014.03.018.
Zhijin Zhao, Junwei Hu. A Sparsity Adaptive Algorithm for Wideband Compressive Spectrum Sensing[J]. Telecommunications science, 2014, 30(3): 100-104. DOI: 10.3969/j.issn.1000-0801.2014.03.018.
针对基于压缩感知的传统频谱感知方法通常假设稀疏度已知,而实际频谱感知中信道稀疏度是未知且时变的这一问题,提出一种稀疏度自适应的宽带频谱感知算法。首先采用分布式压缩感知和RIP 性质预估计稀疏度,然后通过置信系数更新估计得到频谱支撑集,即主用户正在使用的频谱。仿真结果表明,在低信噪比条件下,本方法的检测概率高于稀疏度已知的频谱感知方法,而仅损失极少的频谱利用率,且计算复杂度低。
Traditional spectrum sensing based on compressed sensing assumes that the sparsity is known
in fact
it is unknown and time-varying. To solve the problem
a sparsity adaptive algorithm for wideband spectrum sensing was proposed. First
the distributed compressed sensing and restricted isometry property principle were adopted to estimate an initial sparsity value. Then the confidence coefficient was used to update the sparsity and the spectrum support set was obtained
which was occupied by a primary user. Simulation results show that the proposed method has better spectrum detection performance than the spectrum sensing method with a known sparsity
and losses spectrum availability a little in low SNR
and its complexity is small.
Mitola J . Cognitive radio: an integrated agent architecture for software defined radio . Stockhdm:Royal Institute of Technology , 2000
Donoho D L . Compressed sensing . IEEE Transactions on Information Theory , 2006 , 52 ( 4 ): 1289 ~ 1306
Candes E , Romberg J , Tao T . Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information . IEEE Transactions on Information Theory , 2006 , 52 ( 2 ): 489 ~ 509
Zhi T , Giannakis G B . Compressed sensing for wideband cognitive radios . Proceedings of IEEE International Conference on Speech and Signal Processing , HI,USA , 2007 : 1357 ~ 1360
Polo Y L , Ying W , Pandharipande A , et al . Compressive wide-band spectrum sensing . Proceedings of IEEE International Conference on Speech and Signal Processing , Taipei,China , 2009 : 1655 ~ 1667
Leus G , Ariananda D D . Power spectrum blind sampling . IEEE Signal Processing Letters , 2011 , 18 ( 8 ): 443 ~ 446
Wang Y , Tian Z , Feng C Y . Sparsity order estimation and its application in compressive spectrum sensing for cognitive radios . IEEE Transactions on Wireless Communications , 2012 , 11 ( 6 ): 2116 ~ 2125
杨成 , 冯巍 , 冯辉 等 . 一种压缩采样中的稀疏度自适应子空间追踪算法 . 电子学报 , 2010 , 38 ( 4 ): 1914 ~ 1917
Candes E J , Tao T . Decoding by linear programming . IEEE Transactions on Information Theory , 2005 , 51 ( 12 ): 4203 ~ 4215
Candes E J , Tao T . Stable signal recovery from incomplete and inaccurate measurements . Communications on Pure and Applied Mathematics , 2006 , 59 ( 8 ): 1207 ~ 1223
Lu Y , Guo W B , Wang X , et al . Probabilistic greedy pursuit for streaming compressed spectrum sensing . The Journal of China Universities of Posts and Telecommunications , 2011 , 18 ( 5 ): 15 ~ 21
Baron D , Wakin M B , Duarte M . Distributed Compressive Sensing . Technical Report, Rice University , 2006
Tropp J A , Gilbert A C , Strauss M J . Simultaneous sparse approximation via greedy pursuit . Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing,Philadelphia , 2005 : 721 ~ 724
Do T T , Lu G , Nguyen N , et al . Sparsity adaptive matching pursuit algorithm for practical compressed sensing . Proceedings of Asilomar Conference on Signals, System, and Computers , Pacific Grove, California , 2008 : 581 ~ 587
0
浏览量
366
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构