浏览全部资源
扫码关注微信
1. 浙江科技学院理学院 杭州 310023
2. 杭州电子科技大学计算机学院 杭州 310018
[ "钱亚冠,男,博士,浙江科技学院理学院副教授,主要研究方向为互联网流量分类、下一代互联网、机器学习与数据挖掘。" ]
[ "张旻,男,博士,杭州电子科技大学计算机学院讲师,主要研究方向为网络虚拟化、下一代互联网、软件定义网络。" ]
网络出版日期:2014-04,
纸质出版日期:2014-04-20
移动端阅览
钱亚冠, 张旻. 基于过抽样技术的P2P流量识别方法[J]. 电信科学, 2014,30(4):109-113.
Yaguan Qian, Min Zhang. P2P Traffic Identification Based Over-Sampling Technique[J]. Telecommunications science, 2014, 30(4): 109-113.
钱亚冠, 张旻. 基于过抽样技术的P2P流量识别方法[J]. 电信科学, 2014,30(4):109-113. DOI: 10.3969/j.issn.1000-0801.2014.04.016.
Yaguan Qian, Min Zhang. P2P Traffic Identification Based Over-Sampling Technique[J]. Telecommunications science, 2014, 30(4): 109-113. DOI: 10.3969/j.issn.1000-0801.2014.04.016.
针对P2P类不平衡问题提出将复杂的多类不平衡问题转化为简单的两类不平衡问题,再通过迭代SMOTE过抽样技术丰富P2P的概念表达,从而提高P2P流量的识别率。实验结果表明,该方法可以显著提高诸如Naïve Bayes这样的简单模型在P2P上的识别率,由此可证明该方法对于改善P2P类不平衡问题的有效性。
A new approach that transfers the multi-class imbalanced problem into simple two-class imbalanced problem was proposed
and a mended SMOTE over-sampling algorithm to enrich the P2P concept was applied. The experimental results show the approach can efficiently improve the P2P identifying rate using the Naïve Bayes model.
Mochalski K , Schulze H . Ipoque internet study 2008/2009 . http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009 http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009 , http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009 , 2009
MacManus R . Trend watch: P2P traffic much bigger than Web traffic . http://www.readwriteweb.com/archives/p2p_growth_ trend_watch.php http://www.readwriteweb.com/archives/p2p_growth_ trend_watch.php , http://www.readwriteweb.com/archives/p2p_growth_ trend_watch.php , 2006
Sun X , Torres R , Rao S . Preventing DDoS attacks on internet servers exploiting P2P systems . Computer Networks , 2010 , 54 ( 15 ): 2756 ~ 2774
Dainotti A , Pescapè A , Claffy K C . Issues and future directions in traffic classification . Network, IEEE , 2012 , 26 ( 1 ): 35 ~ 40
Gong S F , Chen J . A P2P traffic detection method based on support vector machine . Applied Mechanics and Materials , 2012 , 198 : 1280 ~ 1285
Erman J , Mahanti A , Arlitt M . Byte me: a case for byte accuracy in traffic classification . Proceedings of the 3rd Annual ACM Workshop on Mining Network Data , San Diego, California, USA , 2007 : 35 ~ 38
Liu Q , Liu Z . A comparison of improving multi-class imbalance for internet traffic classification . Information Systems Frontiers , 2012 ( 7 ): 1 ~ 13
Ling C , Li C . Data mining for direct marketing problems and solutions . Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining(KDD-98) , New York, NY , 1998
Chawla N V , Bowyer K W , Hall L O , et al . SMOTE: synthetic minority over-sampling technique . Journal of Artificial Intelligence Research , 2002 ( 16 )
Wang R Y , Zhang L , Liu Z . Classifying imbalanced internet traffic based PCDD: a per concept drift detection method . Smart Computing Review , 2013 ( 2 )
Hall M A . Correlation-based Feature Selection for Machine Learning . The University of Waikato , The University of Waikato , 1999
Moore A W , Zuev D . Internet traffic classification using bayesian analysis techniques . ACM SIGMETRICS Performance Evaluation Review , 2013 , 33 ( 1 ): 50 ~ 60
Xu P , Lin S . Internet traffic classification using C4.5 decision tree . Journal of Software , 2009 , 20 ( 10 ): 2692 ~ 2704
Yuan R , Li Z , Guan X , et al . An SVM-based machine learning method for accurate internet traffic classification . Information Systems Frontiers , 2010 , 12 ( 2 ): 149 ~ 156
Sun R , Yang B , Peng L , et al . Traffic classification using probabilistic neural networks . Proceedings of Natural Computation (ICNC), 2010 Sixth International Conference on IEEE , Valencia, Spain , 2010
Moore A W . Dataset . http://www.cl.cam.ac.uk/research/srg/netos/nprobe/data/papers/ sigmetrics/ http://www.cl.cam.ac.uk/research/srg/netos/nprobe/data/papers/ sigmetrics/ http://www.cl.cam.ac.uk/research/srg/netos/nprobe/data/papers/ sigmetrics/
Yu L , Liu H . Feature selection for high-dimensional data: a fast correlation-based filter solution . Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003) , Piscataway, NJ, USA , 2003
0
浏览量
423
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构