浏览全部资源
扫码关注微信
1. 公安部科技信息化局北京100741
2. 公安部第一研究所北京100048
[ "刘爱江,男,公安部科技信息化局副处长,主要研究方向为信息安全。" ]
[ "黄长慧,女,公安部第一研究所工程师,主要研究方向为网络安全。" ]
[ "胡光俊,男,公安部第一研究所副研究员,主要研究方向为网络安全。" ]
网络出版日期:2014-07,
纸质出版日期:2014-07-20
移动端阅览
刘爱江, 黄长慧, 胡光俊. 基于改进神经网络算法的木马控制域名检测方法[J]. 电信科学, 2014,30(7):39-42.
Aijiang Liu, Changhui Huang, Guangjun Hu. Detection Metbod of Trojan's Control Domain Based on Improved Neural Network Algoritbm[J]. Telecommunications science, 2014, 30(7): 39-42.
刘爱江, 黄长慧, 胡光俊. 基于改进神经网络算法的木马控制域名检测方法[J]. 电信科学, 2014,30(7):39-42. DOI: 10.3969/j.issn.1000-0801.2014.07.007.
Aijiang Liu, Changhui Huang, Guangjun Hu. Detection Metbod of Trojan's Control Domain Based on Improved Neural Network Algoritbm[J]. Telecommunications science, 2014, 30(7): 39-42. DOI: 10.3969/j.issn.1000-0801.2014.07.007.
摘要:首先对木马利用域名进行回连控制的特点进行了分析,对采用DNS进行网络木马检测的方法进行了概述,接着基于对木马域名的静态、动态特征的分析,提取了域名使用时间、访问域名周期性、IP 地址变化速度、IP地址所属国变更、IP地址为私有地址、同域名多IP 地址分属不同国家、TTL 值、域名搜索量8个指标作为BP神经网络算法的输入,并提出了一种改进BP神经网络算法来解决大量DNS域名训练效率、平均误差值大的问题;最后用改进的神经网络算法对样本进行了实验评估测试,结果显示改进算法和传统算法的检出率相当,但检测效率大为提高。
Firstly
the character that the Trojans use domain name to control was analyzed and the method that DNS adopted to detect Trojans was introduced. Secondly
based on the analysis of static and dynamic characters for Trojan domain name
eight indicators were obtained as the input of BP neural network algorithm
including operation time of domain name
the period to visit the domain name
the variation speed of IP address
the country change of IP address
IP address of private address
the same domain name with multiple IP address for different countries
TTL value and search times of domain name. An improved BP neural network algorithm was proposed to solve training efficiency for a great number of domain names
and large average error. Finally
the experimental evaluation of samples was tested by improved neural network algorithm. Compared with traditional neural network algorithm
the detection efficiency is better.
Mockapetris P . Domain Names-Concepts and Facilities. RFC1034 , 1987
Seifert C , Welch I , Komisarczuk P , et al . Identification of malicious web pages through analysis of underlying DNS and web server relationships . Proceedings of the 33rd IEEE Conference on Local Computer Networks , Montreal, Canada , 2008 : 935 ~ 941
Choi H , Lee H , Lee H , et al . Botnet detection by monitoring group activities in DNS traffic . Proceedings of the 7th IEEE International Conference on Computer and Information Technology(CIT'07) , Washington, DC, USA , October 2007 : 715 ~ 720
Foo S , Hui S C , Yip S W , et al . Approaches for resolving dynamic IP addressing . Internet Research , 1997 , 7 ( 3 ): 208 ~ 216
Ramachandran A , Feamster N , Dagon D . Revealing botnet membership using DNSBL counter-intelligence . Proceedings of the 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet(SRUTIˊ06) , San Jose, CA , 2006 : 49 ~ 54
Dagon D , Zou C , Lee W . Modeling botnet propagation using time zones . Proceedings of NDSS , San Diego, California, USA , 2006
Hirasawa K , Oka S , Sakai S , et al . Learning Petri network with route control . Proceedings of IEEE International Conference on Systems, Man, Cybernetics , Vancouver, BC, Canada , 1995 : 2706 ~ 2711
Alexa . http://www.alexa.com/topsites http://www.alexa.com/topsites , 2012
mirror2.malwaredomains.com . http://mirror2.malwaredomains.com/files/ http://mirror2.malwaredomains.com/files/ , 2012
0
浏览量
458
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构