浏览全部资源
扫码关注微信
1. 保定学院信息技术系 保定071000
2. 浙江大学理学院 杭州310058
1.1.保定学院信息技术系 保定071000;2.浙江大学理学院 杭州310058
[ "赵建军,男,保定学院实验师,主要研究方向为数据挖掘、网络安全。" ]
[ "王怀宇,男,保定学院讲师,主要研究方向为数据挖掘、嵌入式系统。" ]
[ "赵泽阳,男,保定学院硕士生,主要研究方向为数据收集。" ]
[ "陈生昌,男,博士,浙江大学教授、博士生导师,主要研究方向为压缩感知理论、数据收集技术、计算地球物理。" ]
网络出版日期:2014-09,
纸质出版日期:2014-09-20
移动端阅览
赵建军, 王怀宇, 赵泽阳, 等. WSN中基于多分辨率和压缩感知的数据融合方案[J]. 电信科学, 2014,30(9):92-99.
Jianjun Zhao, Huaiyu Wang, Zeyang Zhao, et al. Data Aggregation Scbeme Based on Multi-Resolution and Compressive Sensing in Wireless Sensor Network[J]. Telecommunications science, 2014, 30(9): 92-99.
赵建军, 王怀宇, 赵泽阳, 等. WSN中基于多分辨率和压缩感知的数据融合方案[J]. 电信科学, 2014,30(9):92-99. DOI: 10.3969/j.issn.1000-0801.2014.09.013.
Jianjun Zhao, Huaiyu Wang, Zeyang Zhao, et al. Data Aggregation Scbeme Based on Multi-Resolution and Compressive Sensing in Wireless Sensor Network[J]. Telecommunications science, 2014, 30(9): 92-99. DOI: 10.3969/j.issn.1000-0801.2014.09.013.
当前基于压缩感知的传感器网络数据融合方案中,不论数据字段有何特征,均假设网络具有固定而均匀的压缩阈值,从而导致数据通信量过高,能耗浪费较大。提出一种基于多分辨率和压缩感知的数据融合方案。首先,对传感器网络进行配置,以生成多个层次类型不同的簇结构,用于过渡式数据收集,在该结构上,最低层的叶节点只传输原始数据,其他层的数据收集簇进行压缩采样;然后将其测量值向上发送,当母数据收集簇收到测量值时,利用基于反向DCT和DCT模型的CoSaMP算法恢复原始数据;最后,在SIDnet-SWANS平台上部署了该方案,并在不同的二维随机部署传感器网络规模下进行了测试。实验结果表明,随着分层位置的变化,大部分节点的能耗均显著降低,与NCS方案相比,能耗下降50%~77%,与HCS方案相比,能耗下降37%~70%。
A data aggregation scheme based on multi-resolution with compressed sensing was proposed. Firstly
the network was configured to achieve the multiple-level and the different types of cluster structure for intermediate data collection
on this structure
the leaf nodes in the lowest level only transmit the raw data. The collecting clusters in other levels perform the compressed sampling and then transmit them to their parent cluster heads. When parent collecting clusters receive random measurements
they use inverse DCT and DCT model based CoSaMP algorithm to recover the original data. The proposed scheme was implemented on a SIDnet-SWANS simulation platform and test different sizes of two-dimensional randomly deployed sensor network. The experiment results show that the substantial energy savings are reported for a large portion of sensors on the different hierarchical positions
ranging from 50% to 77% when compared with NCS
and from 37% to 70% when compared with HCS.
许建 , 杨庚 , 陈正宇 , 等 . 基于二次独立集的数据融合调度算法 . 通信学报 2014 , 12 ( 1 ): 1306 ~ 1313
师东生 . WSN 中一种基于混合 CS 的分簇数据收集方案 . 计算机应用研究 2014 , 31 ( 3 ): 892 ~ 897
杨庚 , 李森 , 陈正宇 , 等 . 传感器网络中面向隐私保护的高精确度数据融合算法 . 计算机学报 2013 , 36 ( 1 ): 189 ~ 199
乐俊 , 张维明 , 肖卫东 , 等 . 无线传感器网络中一种基于非均匀划分的分簇数据融合算法 . 计算机研究与发展 2011 , 48 ( z2 ): 247 ~ 254
余阳 , 吴银峰 , 冯仁剑 , 等 . 应用于管道气体泄漏监测的 WSN层级式数据融合方法 . 高技术通讯 2012 , 22 ( 1 ): 1 ~ 7
林蔚 , 尹娟 . 无线传感器网络含有缺失数据的数据融合研究 . 计算机应用研究 2012 , 28 ( 4 ): 631 ~ 636
马守明 , 王汝传 , 叶宁 . 基于信誉度集对分析的 WSN 完全数据融合 . 计算机研究与发展 2011 , 48 ( 8 ): 1652 ~ 1658
李小亚 , 潘家辉 . 无线传感器网络能量平衡的数据汇聚路由算法 . 华南师范大学学报 ( 自然科学版 ), 2012 , 44 ( 2 ): 53 ~ 57
Luo C , Wu F , Sun J , et al . Compressive data gathering for large-scale wireless sensor networks . Proceedings of the 15th Annual International Conference on Mobile Computing and Networking , Beijing, China 2009 : 145 ~ 156
Luo J , Xiang L , Rosenberg C . Does compressed sensing improve the throughput of wireless sensor networks . Proceedings of 2010 IEEE International Conference on Communications(ICC) , Cape Town, South Africa 2010 : 1 ~ 6
Xiang L , Luo J , Vasilakos A . Compressed data aggregation for energy efficient wireless sensor networks . Proceedings of 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks(SECON) , Salt Lake City, Utah, USA 2011 : 46 ~ 54
Gilbert A C , Strauss M J , Tropp J A , et al One sketch for all:fast algorithms for compressed sensing . Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing , San Diego, California, USA 2007 : 237 ~ 246
Park J , Jung B C , Kim J M , et al . Sparse signal recovery with parallel orthogonal matching pursuit and its performances . Journal of the Korea Institute of Information and Communication Engineering , 2013 , 17 ( 8 ): 1784 ~ 1789
Zhang W , Huang B , Zhou T . An improvement on StOMP for sparse solution of linear underdetermined problems . Proceedings of 32nd Chinese Control Conference(CCC) , Xi'an, China, IEEE 2013 : 1951 ~ 1956
Jeong Y S , Han Y H , Park J J , et al . MSNS: mobile sensor network simulator for area coverage and obstacle avoidance based on GML . EURASIP Journal on Wireless Communications and Networking , 2012 ( 1 ): 1 ~ 15
0
浏览量
817
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构