浏览全部资源
扫码关注微信
1. 杭州电子科技大学通信工程学院 杭州310018
2. 中国电子科技集团第36研究所通信系统信息控制技术国家级重点实验室 嘉兴314001
[ "赵知劲,女,博士,杭州电子科技大学教授、博士生导师,杭州电子科技大学通信工程学院党委书记,主要研究方向为认知无线电、通信信号处理、自适应信号处理等。" ]
[ "胡伟康,男,杭州电子科技大学硕士生,主要研究方向为认知无线电及频谱感知算法的研究。" ]
[ "胡俊伟,男,杭州电子科技大学硕士生,主要研究方向为压缩感知在通信系统中的应用。" ]
网络出版日期:2014-09,
纸质出版日期:2014-09-20
移动端阅览
赵知劲, 胡伟康, 胡俊伟. 分布式的1bit压缩频谱感知算法[J]. 电信科学, 2014,30(9):106-110.
Zhijin Zhao, Weikang Hu, Junwei Hu. 1 bit Compressive Spectrum Sensing Algoritbm Based on Distributed Model[J]. Telecommunications science, 2014, 30(9): 106-110.
赵知劲, 胡伟康, 胡俊伟. 分布式的1bit压缩频谱感知算法[J]. 电信科学, 2014,30(9):106-110. DOI: 10.3969/j.issn.1000-0801.2014.09.015.
Zhijin Zhao, Weikang Hu, Junwei Hu. 1 bit Compressive Spectrum Sensing Algoritbm Based on Distributed Model[J]. Telecommunications science, 2014, 30(9): 106-110. DOI: 10.3969/j.issn.1000-0801.2014.09.015.
由于频谱感知中信道稀疏度动态变化,导致分布式频谱感知网络中节点间信息传输频繁,消耗感知网络通信带宽。为了缓解网络通信带宽压力,提出分布式的1 bit压缩频谱感知算法。各节点对感知数据进行压缩采样并1 bit量化,然后融合节点采用JSM-2模型对数据进行融合,最后通过BIHT算法重构信号频谱,实现频谱感知。仿真结果表明,在低信噪比和较少的采样数目下,分布式的1 bit压缩频谱感知算法能具有较好的频谱检测性能,是一种可实用的频谱感知方法。
Since the actual sparsity of spectrum is unknown and time-varying
information transmit frequently between nodes in the distributed spectrum sensing network consumes communication bandwidth. To relieve the network communication bandwidth pressure
a spectrum algorithm based on 1 bit compressed sensing and distributed model was proposed. The sensing data of the nodes was compressive sampled and quantified in 1 bit
and then the data was fused in fusion node
through the mode of JSM-2. Finally the spectrum was reconstructed by the BIHT algorithm to implement spectrum sensing. Simulation results show that the proposed method has better spectrum detection performance with a few samples in low SNR
so it is a practical method of spectrum sensing.
Mitola J . Cognitive radio: an integrated agent architecture for software defined radio . Stockholm: Sweden Royal Institute of Technology(RTH) , 2000
Donoho D L . Compressed sensing . IEEE Transactions on Information Theory , 2006 , 52 ( 4 ): 1289 ~ 1306 .
Cand E S E J , Romberg J , Tao T . Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information . IEEE Transactions on Information Theory , 2006 , 52 ( 2 ): 489 ~ 509
Boufounos P T , Baraniuk R G . 1 bit compressive sensing . Proceedings of the 42nd Annual Conference on Information Sciences and Systems(CISS) , Princeton, NJ, USA 2008 : 16 ~ 21
Jacques L , Laska J N , Boufounos P T , et al . Robust 1 bit compressive sensing via binary stable embeddings of sparse vectors . IEEE Transactions on Information Theory , 2011 , 59 ( 4 ): 2082 ~ 2102
Yan M , Yang Y , Osher S . Robust 1 bit compressive sensing using adaptive outlier pursuit . IEEE Transactions on Signal Processing , 2012 , 60 ( 7 ): 3868 ~ 3875
Baraniuk R G . Compressive sensing . IEEE Signal Processing Magazine , 2007 , 24 ( 4 ): 118 ~ 121
Goyal V K , Kova V C , Evi C J , et al . Quantized frame expansions with erasures . Applied and Computational Harmonic Analysis , 2001 , 10 ( 3 ): 203 ~ 233
Plan Y , Vershynin R . One bit compressed sensing by linear programming . Communications on Pure and Applied Mathematics , 2013 , 36 ( 4 ): 1 ~ 18
Laska J N , Baraniuk R G . Regime change: bit-depth versus measurement-rate in compressive sensing . IEEE Transactions on Signal Processing , 2012 , 60 ( 7 ): 3496 ~ 3505
Polo Y L , Wang Y , Pandharipande A , et al . Compressive wide-band spectrum sensing . Proceedings of IEEE International Conference on Speech and Signal Processing , Taipei, Taiwan, China , 2009 : 2337 ~ 2340
Baron D , Duarte M F , Wakin M B , et al . Distributed compressive sensing . ArXiv Preprint ArXiv:0901.3403 , 2009
Tropp J A , Gilbert A C , Strauss M J . Simultaneous sparse approximation via greedy pursuit . Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing , Philadelphia , 2005 : 721 ~ 724
0
浏览量
354
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构