浏览全部资源
扫码关注微信
1. 北京信息科技大学计算机学院 北京 100101
2. 网络文化与数字传播北京市重点实验室 北京 100101
[ "孙晓晨,女,北京信息科技大学教授,主要研究方向为社交网络、数据挖掘。" ]
[ "徐雅斌,男,北京信息科技大学教授,主要研究方向为社交网络、云计算。" ]
网络出版日期:2014-10,
纸质出版日期:2014-10-20
移动端阅览
孙晓晨, 徐雅斌. 位置社交网络的潜在好友推荐模型研究[J]. 电信科学, 2014,30(10):71-77.
Xiaochen Sun, Yabin Xu. A Potential Friends Recommendation Model for Location-Based Social Network[J]. Telecommunications science, 2014, 30(10): 71-77.
孙晓晨, 徐雅斌. 位置社交网络的潜在好友推荐模型研究[J]. 电信科学, 2014,30(10):71-77. DOI: 10.3969/j.issn.1000-0801.2014.10.012.
Xiaochen Sun, Yabin Xu. A Potential Friends Recommendation Model for Location-Based Social Network[J]. Telecommunications science, 2014, 30(10): 71-77. DOI: 10.3969/j.issn.1000-0801.2014.10.012.
为了提高位置社交网络的服务便捷性和用户感受度,与位置相关的推荐服务越来越具有重要意义和应用需求。提出的潜在好友推荐模型主要是根据签到位置的相似度及好友相似度进行潜在用户推荐。通过用户的好友关系、签到特性及签到历史记录,计算用户在各个位置兴趣点的位置权重,再分别利用位置权重及好友关系计算用户的位置相似度和好友相似度,最后根据用户位置和好友关系的综合相似度进行潜在用户推荐。实验结果表明,提出的潜在好友推荐模型是切实有效的。
To make service convenient and improve user experience degrees
recommendation service has become more and more important to users in the location-based social network(LBSN). An improved potential friends recommendation in LBSN
which is based on the relationship among friends and the similarity of locations
was proposed. First of all
the user interest pointsin each position weight with friends' relationship
check-in feature and historical recordwere calculated. Then position weight and the friend relationship were used to calculate the friends' similarity and location similarity. Finally
potential friends to user based on the friends' similarity and location similarity were recommended. The experimental results show that the proposed model is effective.
翟红生 , 于海鹏 . 在线社交网络中的位置服务研究进展与趋势 . 计算机应用研究 , 2013 , 30 ( 11 ): 3221 ~ 3227
Hruschka D J , Henrich J . Friendship, cliquishness, and the emergence of cooperation . Journal of Theoretical Biology , 2006 , 239 ( 1 ): 1 ~ 15
Li Q , Zheng Y , Xie X , et al . Mining user similarity based on location history . Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems , New York, USA , 2008 : 31 ~ 34
Hung C C , Chang C W , Peng W C . Mining trajectory profiles for discovering user communities . Proceedings of the International Workshop on Location Based Social Networks , New York, USA , 2009 : 1 ~ 8
Ma H , Zhou D , Liu C . Recommender systems with social regularization . Proceedings of the 4th ACM International Conference on Web Search and Data Mining , New York, USA , 2011 : 287 ~ 296
Zhang D , Li N , Zhou Z H , et al . IBAT: detecting anomalous taxi trajectories from GPS traces . Proceedings of the 13th International Conference on Ubiquitous Computing , New York, USA , 2011 : 99 ~ 108
Zheng N , Li Q . A recommender system based on tag and time information for social tagging systems . Expert Systems with Applications , 2011 , 38 ( 4 ): 4575 ~ 4587
Zha o K , Wang X , Yu M , et al . User recommendation in reciprocal and bipartite social networks——a case study of online dating . IEEE Intelligent Systems , 2013 , 17 ( 3 ): 29 ~ 30
Liu B , Xiong H , Liu B , et al . Point-of-interest recommendation in location based social networks with topic and location awareness . Proceedings of SIAM International Conference on Data Mining , Austin, Texas, USA , 2013 : 396 ~ 404
邢冬丽 , 赵美红 , 陈文成 . 基于密度的DBSCAN算法 . 计算机工程与应用 , 2007 , 43 ( 20 ): 216 ~ 221
Dunham H M . 数据挖掘教程 . 郭崇慧 , 田凤占 , 靳晓明 译. 北京 : 清华大学出版社 , 2005
Cho E , Myers S A , Leskovec J . Friendship and mobility: user movement in location-based social networks . Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , New York, USA , 2011 : 1082 ~ 1090
Yang T , Cui Y , Jin Y . BPR-UserRec: a personalized user recommendation method in social tagging systems . The Journal of China Universities of Posts and Telecommunications , New York, USA , 2013 , 20 ( 1 ): 122 ~ 128
Spertus E , Sahami M , Buyukkokten O . Evaluating similarity measures: a large-scale study in the orkut social network . Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining , New York, USA , 2005 : 678 ~ 684
Tan P N , Steinbach M , Kumar V . 数据挖掘导论 . 范明 , 范宏建 译. 北京 : 人民邮电出版社 , 2010 ,
0
浏览量
620
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构