浏览全部资源
扫码关注微信
[ "徐元,男,中国科学院半导体研究所助理工程师,主要研究方向为神经网络的硬件化实现等。" ]
[ "鲁华祥,男,博士,中国科学院半导体研究所研究员, 主要研究方向为智能信息处理、神经网络技术及其应用等。" ]
[ "陈旭,女,博士,中国科学院半导体研究所副研究员,主要研究方向为模式识别、智能信息处理。" ]
网络出版日期:2014-11,
纸质出版日期:2014-11-20
移动端阅览
徐元, 鲁华祥, 陈旭. 基于支持向量机的认知无线电频谱预测方法 *[J]. 电信科学, 2014,30(11):87-92.
Yuan Xu, Huaxiang Lu, Xu Chen. A SVM Based Spectrum Prediction Scheme for Cognitive Radio[J]. Dianxin kexue, 2014, 30(11): 87-92.
徐元, 鲁华祥, 陈旭. 基于支持向量机的认知无线电频谱预测方法 *[J]. 电信科学, 2014,30(11):87-92. DOI: 10.3969/j.issn.1000-0801.2014.11.015.
Yuan Xu, Huaxiang Lu, Xu Chen. A SVM Based Spectrum Prediction Scheme for Cognitive Radio[J]. Dianxin kexue, 2014, 30(11): 87-92. DOI: 10.3969/j.issn.1000-0801.2014.11.015.
摘 要:频谱预测是认知无线电系统中的关键技术之一,利用该技术可以显著减少认知用户的能量损耗,同时提高系统的频谱利用率。针对现有基于BP神经网络的频谱预测方法预测精度低及失效率高等问题,将建立在统计学习理论和结构风险最小原则上的支持向量机引入认知无线电频谱预测中,利用其对小样本及非线性数据优越的预测性能对信道进行预测。实验结果表明,该方法通过避免无效检测,提高了频谱感知系统的性能,并且比基于BP神经网络算法的模型的预测精度更高,具有良好的实用性与灵活性。
Spectrum prediction is one of the key technologies in cognitive radio(CR)systems. This technology can reduce considerable energy consumed by spectrum sensing
and improve the overall system's spectrum utilization. Aiming at the low accuracy and invalid prediction problems of spectrum prediction in cognitive radio
a new prediction method was proposed by integrating support vector machine(SVM)which was based on statistical learning theory(SLT)and structural risk minimization principle(SRM). The channel status is forecasted by utilizing the excellent forecasting performance of the model in small sample and nonlinear data of SVM. The results show that by avoiding invalid prediction
the spectrum utilization can also be improved
and the forecasting accuracy is better than model based on back propagation(BP)
thus the proposed algorithm is practicable and flexible for spectrum prediction in cognitive radio.
Tumuluru V K , Wang P , Niyato D . Channel status prediction for cognitive radio networks . Wireless Communications and Mobile Computing , 2010 , 12 ( 10 ): 862 ~ 74
Tumuluru V K , Wang P , Niyato D . A neural network based spectrum prediction scheme for cognitive radio . Proceedings of 2010 IEEE International Conference on Communications(ICC2010) , Piscataway , 2010
Yin L , Yin S X , Hong W J , et al . Spectrum behavior learning in cognitive radio based on artificial neural network . Proceedings of 2011 Military Communications Conference , Baltimore,MD,USA , 2011
Gorcin A , Celebi H , Qaraqe K A . An autoregressive approach for spectrum occupancy modeling and prediction based on synchronous measurements . Proceedings of IEEE Symposium on Personal Indoor and Mobile Radio Communications(PIMRC 2011) , Toronto, Canada, September , 2011 : 705 ~ 709
Black T , Kerans B , Kerans A . Implementation of Hidden Markov model spectrum prediction algorithm . Proceedings of IEEE Symposium on Communications and Information Technologies (ISCIT 2012) , Queensland, Australia, August , 2012 : 280 ~ 283
Chen Z , Qiu R C . Prediction of channel state for cognitive radio using higher-order hidden Markov model . Proceedings of IEEE SoutheastCon 2010(SoutheastCon) , Concord, NC, USA, March , 2010 : 276 ~ 282
Yin S X , Chen D W , Zhang Q , et al . Mining spectrum usage data: a large-scale spectrum measurement study . IEEE Transactions on Mobile Computing , 2012 , 11 ( 6 ): 1033 ~ 1046
李国正 , 王猛 , 曾华军 . 支持向量机导论 . 北京 : 电子工业出版社 2004
尉询楷 , 李应红 , 张朴 等 . 基于支持向量机的时间序列预测模型分析与应用 . 系统工程与电子技术 , 2005 , 27 ( 3 ): 530 ~ 532
陈果 . 基于遗传算法的支持向量机时间序列预测模型优化 . 仪器仪表学报 , 2006 , 27 ( 9 ): 1081 ~ 1084
孙煦 , 陆化普 , 吴娟 . 基于蚁群优化支持向量机模型的公路客运量预测 . 合肥工业大学学报 , 2012 , 35 ( 1 ): 125 ~ 29
李书荣 . 基于DE-BP 神经网络认知无线电频谱预测研究 . 西南交通大学硕士学位论文 , 2013
陈斌华 . 认知无线电系统中的频谱预测算法研究 . 北京邮电大学硕士学位论文 , 2011
高翔 , 任国春 , 陈瑾 等 . 快变信道环境下基于支持向量回归的频谱预测 . 信号处理 , 2004 , 30 ( 3 ): 289 ~ 297
贺新颖 . 基于支持向量机的认知无线电若干关键技术研究 . 北京邮电大学硕士学位论文 , 2009
Cooper B R . Introduction to Queueing Theory . New York:Elsevier North Holland Inc , 1981
0
浏览量
811
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构