浏览全部资源
扫码关注微信
1. 重庆市高校通信网测试技术工程研究中心 重庆400065
2. 重庆邮电大学电子信息与网络工程研究院 重庆400065
3. 重庆邮电大学通信与信息工程学院 重庆400065
[ "刘勇,男,重庆邮电大学通信与信息工程学院硕士生,主要研究方向为网络数据挖掘及流量分类" ]
[ "雒江涛,男,博士,重庆邮电大学通信与信息工程学院教授、博士生导师,中国电子学会高级会员,主要研究方向为移动通信和下一代网络及测试技术研究与开发" ]
[ "邓生雄,男,重庆邮电大学通信与信息工程学院硕士生,主要研究方向为网络数据挖掘及流量分类" ]
[ "王小平,男,重庆邮电大学通信与信息工程学院硕士生,主要研究方向为网络数据挖掘及流量分类" ]
网络出版日期:2014-12,
纸质出版日期:2014-12-15
移动端阅览
刘勇, 雒江涛, 邓生雄, 等. 基于Hadoop的网络分流和流特征计算[J]. 电信科学, 2014,30(12):76-81.
Yong Liu, Jiangtao Luo, Shengxiong Deng, et al. Diffluent Internet Traffic and Characteristics Computation Based on Hadoop[J]. Telecommunications science, 2014, 30(12): 76-81.
刘勇, 雒江涛, 邓生雄, 等. 基于Hadoop的网络分流和流特征计算[J]. 电信科学, 2014,30(12):76-81. DOI: 10.3969/j.issn.1000-0801.2014.12.011.
Yong Liu, Jiangtao Luo, Shengxiong Deng, et al. Diffluent Internet Traffic and Characteristics Computation Based on Hadoop[J]. Telecommunications science, 2014, 30(12): 76-81. DOI: 10.3969/j.issn.1000-0801.2014.12.011.
网络流量特征计算是网络流量分析的一个重要步骤,对于海量网络流量数据,并行化计算网络流量特征是高效网络流量分析的重要方法。针对传统单机处理成本高、可扩展性差的问题,提出一种基于MapReduce编程模型的网络流量分析方法,并行实现网络分流和流量特征计算。通过使用Hadoop平台对实际数据进行分析,统计常用网络流量属性特征,实验表明,该方法分析网络流量特征的结果准确可信,且适合分析大流量数据。
Internet traffic characteristics computation is an important step of internet traffic analysis
in the face of massive internet traffic data
parallel computing internet traffic characteristics is base to prompt the performance of internet traffic analysis. In order to solve the problems of poor expansibility and high cost that caused by the traditional stand-alone
an internet traffic characteristics analysis method based on MapReduce
which parallel processes diffluent internet traffic and characteristics computing
was proposed. By using the Hadoop platform
the actual data was analyzed and the common internet traffic characteristics were computed. Experiments show that the method is reliable to analyze the characteristic of the internet traffic and it is suitable for analyzing large traffic data.
周爱平 , 程光 , 郭晓军 . 高速网络流量测量方法 . 软件学报 , 2014 , 25 ( 1 ): 135 ~ 153
Li W , Moore A W . A machine learning approach for efficient traffic classification . Proceedings of the 15th InternationalSymposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems , Istanbul, Turkey , 2007 : 310 ~ 317
Li M , Ye J H , Li J L , et al . The research on network traffic management based on Hash aggregation . Journal of Jiangxi Normal University (Natural Sciences Edition), 2011 , 35 ( 2 ): 174 ~ 177
Hadoop . http://hadoop.apache.org/ http://hadoop.apache.org/ , 2014
Lee Y , Kang W , Lee Y . A hadoop-based packet trace processing tool . Proceedings of the 3th International Conference on Traffic Monitoring and Analysis , Vienna, Austria , 2011 : 51 ~ 63
Qiao Y , Lei Z , Yuan L , et al . Offline traffic analysis system based on Hadoop . Journal of China Universities of Posts and Telecommunications , 2013 , 20 ( 5 ): 97 ~ 103
杨新宇 , 杨树森 , 李娟 . 基于非线性预处理网络流量预测方法的泛洪型 DDoS 攻击检测算法 . 计算机学报 , 2011 , 34 ( 2 ): 395 ~ 405
何高峰 , 杨明 , 罗军舟 等 . Tor匿名通信流量在线识别方法 . 软件学报 , 2013 , 24 ( 3 ): 540 ~ 556
Liu Z X , He M B , Liu S , et al . Research of P2P traffic comprehensive identification method . Proceedings of International Conference on Network Computing and Information Security , Guilin, China , 2011 : 307 ~ 310
Thiriet M J M . Classifying application flows and intrusion detection in internet traffic . Doctoral Dissertation University of Science and Technology , 2013
0
浏览量
601
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构