浏览全部资源
扫码关注微信
[ "章坚武,男,博士后,杭州电子科技大学教授,主要研究方向为无线通信与网络信号处理等。" ]
[ "陈晓燕,女,杭州电子科技大学硕士研究生,主要研究方向为基于CS的认知无线网络中的多用户资源分配。" ]
[ "许晓荣,男,博士,杭州电子科技大学讲师,主要研究方向为认知无线网络中的资源分配与资源共享等。" ]
网络出版日期:2013-11,
纸质出版日期:2013-11-20
移动端阅览
章坚武, 陈晓燕, 许晓荣. 一种改进的基于DCS的分布式多用户协作频谱感知方法[J]. 电信科学, 2013,29(11):45-51.
Jianwu Zhang, Xiaoyan Chen, Xiaorong Xu. An Improved Distributed Multi-User Cooperative Spectrum Sensing Method Based on DCS[J]. Telecommunications science, 2013, 29(11): 45-51.
章坚武, 陈晓燕, 许晓荣. 一种改进的基于DCS的分布式多用户协作频谱感知方法[J]. 电信科学, 2013,29(11):45-51. DOI: 10.3969/j.issn.1000-0801.2013.11.008.
Jianwu Zhang, Xiaoyan Chen, Xiaorong Xu. An Improved Distributed Multi-User Cooperative Spectrum Sensing Method Based on DCS[J]. Telecommunications science, 2013, 29(11): 45-51. DOI: 10.3969/j.issn.1000-0801.2013.11.008.
分布式压缩感知(DCS)理论扩展了压缩感知理论的应用,将单信号的压缩采样扩展到信号群的压缩采样。协作频谱感知技术利用空间的宏集合弥补了单用户在认知无线电宽带频谱感知过程中可能出现检测错误的问题,但在复杂的信号重构过程中增加了计算量。针对这种情况,提出了一种改进的基于DCS的分布式多用户协作频谱感知方法。该改进方法的重构过程是在原OMP算法的基础上,通过利用上一时刻频谱感知所得到的频谱占用情况减少重构算法的计算量。仿真结果表明,在频谱占用情况变化缓慢的情况下,所提的改进方法不仅具有与原算法相同的重构效果,而且在认知用户数量较多的情况下,重构复杂度明显减小。
Distributed compressed sensing theory extends the application of compressed sensing theory
which brings single signal compression sampling to signal group compression sampling. Cooperative spectrum sensing technology uses space set macros to compensate detection error problems during the process of single-user wideband spectrum sensing. However
it increases computational complexity in the process of signal reconstruction. Aiming to this problem
an improved distributed multi-user cooperative spectrum sensing method based on DCS was proposed. On the basis of original OMP algorithm
the improved method reduced reconstruction algorithm's computational complexity through the utilization of previous spectrum occupancy situation. Simulation results indicate that
the proposed method achieves the same effect with the original algorithm under the circumstances of slow spectrum occupancy changes. Meanwhile
in the case of more cognitive users
this method reduces the reconstruction complexity significantly.
Haykin S . Cognitive radio: brain-empowered wireless communications . IEEE Journal on Selected Area in Communication , 2005 , 23 ( 2 ): 201 ~ 220
闫琦 . 认知无线电频谱感知若干关键技术研究 . 西安电子科技大学硕士学位论文 , 2011
顾彬 , 杨震 , 胡海峰 . 基于压缩感知信道能量观测的协作频谱感知算法 . 电子信息学报 , 2012 , 34 ( 1 ): 14 ~ 19
赵知劲 , 张鹏 , 王海泉 等 . 基于OMP算法的宽带频谱感知 . 信号处理 , 2012 , 28 ( 5 ): 725 ~ 728
Baron D , Wakin M B , Duarte M F . Distributed compressed sensing of jointly sparse signals . Proceedings of IEEE 39th Asilomar Conference on Signals, Systems and Computers , Pacific Grove, CA, USA , 2005 : 1537 ~ 1541
Herman M , Strohmer T . High-resolution radar via compressed sensing . IEEE Transactions on Signal Processing , 2009 , 57 ( 6 ): 2275 ~ 2284
石磊 , 周正 , 唐亮 . 认知无线电网络中的压缩协作频谱感知 . 北京邮电大学学报 , 2011 , 34 ( 5 ): 76 ~ 79
Wang C L , Chen H W , Chou Y R . A credibility-based cooperative spectrum sensing technique for cognitive radio systems . Proceedings of Vehicular Technology Conference(VTC Spring), 2011 IEEE 73rd , Budapest, Hungary , 2011 : 1 ~ 5
Gu B , Yang Z , Hu H F , et al . Cooperative compressed sensing for wide-band spectrum detection . Proceedings of the 6th International Conference on Wireless Communications Networking and Mobile Computing(WiCOM) , Chengdu, China , 2010 : 1 ~ 4
吴尘 . 基于压缩感知的信号重构算法研究 . 东南大学硕士学位论文 , 2012
Baron D , Duarte M F , Wakin M B . Distributed Compressive Sensing . Cornell University Library , 2009
0
浏览量
456
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构