浏览全部资源
扫码关注微信
[ "项弘禹(1993−),男,北京邮电大学泛网无线通信教育部重点实验室博士生,主要研究方向为雾无线接入网中切片架构及理论性能。" ]
[ "张欣然(1992−),男,北京邮电大学泛网无线通信教育部重点实验室博士生,主要研究方向为车联网和5G系统级仿真。" ]
[ "朴竹颖(1994−),女,北京邮电大学泛网无线通信教育部重点实验室硕士生,主要研究方向为无线接入网中的边缘缓存管理和优化。" ]
[ "彭木根(1978−),男,北京邮电大学网络技术研究院副院长、教授、博士生导师,主要研究方向为雾无线接入网络、后5G组网理论和关键技术、空间信息网络等。" ]
网络出版日期:2018-08,
纸质出版日期:2018-08-20
移动端阅览
项弘禹, 张欣然, 朴竹颖, 等. 5G移动通信系统的接入网络架构[J]. 电信科学, 2018,34(8):10-18.
Hongyu XIANG, Xinran ZHANG, Zhuying PIAO, et al. Network architecture in the 5Gmobile systems[J]. Telecommunications science, 2018, 34(8): 10-18.
项弘禹, 张欣然, 朴竹颖, 等. 5G移动通信系统的接入网络架构[J]. 电信科学, 2018,34(8):10-18. DOI: 10.11959/j.issn.1000−0801.2018230.
Hongyu XIANG, Xinran ZHANG, Zhuying PIAO, et al. Network architecture in the 5Gmobile systems[J]. Telecommunications science, 2018, 34(8): 10-18. DOI: 10.11959/j.issn.1000−0801.2018230.
为了满足巨流量、大链接、超低时延等5G组网性能需求,针对广覆盖和高容量设计的传统无线接入网络架构亟需演进。首先结合5G愿景与需求,阐明了5G接入网络架构的特点和重要性;然后从学术界和产业界两个角度详细介绍了5G接入网络架构的设计原理和具体组成,分析了优点和不足;最后,探讨了接入网络架构的挑战和未来的可能发展方向。
In ordeRtomeet the performance requirements of 5G networking such as huge traffic
large links
and ultra-low latency
the traditional wireless access network architecture for wide coverage and high capacity design needs to evolve.Firstly
combining the 5G vision and needs
the characteristics and importance of the 5G access network architecture were clarified.Then the design principle and specific composition of the 5G access network architecture was introduced from the perspectives of academia and industry
and the advantages and disadvantages were analyzed.Finally
the challenges of access network architecture and possible future development directions were discussed.
3GPP.Study on new radio access technology:radio access architecture and interfaces:TR38.801 [S ] . 2016 .
董爱先 , 王学军 . 第5 代移动通信技术及发展趋势 [J ] . 通信技术 , 2014 , 47 ( 3 ): 235 - 240 .
DONG A X , WANG X J . Technologies and future development trend of 5Gmobile communication system [J ] . Communications Technology , 2014 , 47 ( 3 ): 235 - 240 .
ITU-R.IMT-vision-framework and overall objectives of the future development of IMT for 2020 and beyond [R ] . 2015 .
ANDREWS J G . What will 5G be? [J ] . IEEE Journal on Selected Areas in Communications , 2014 , 32 ( 6 ): 1065 - 1082 .
ETSI.Network functions virtualisation(NFV):architecture framework,document GS NFV002 v1.1.1 [R ] . 2013 .
3GPP.Study on architecture for next generation system:TR23.799 [R ] . 2016 .
YOUSAF F , BREDEL M , SCHALLER S , et al . NFV and SDN—key technology enablers for 5G networks [J ] . IEEE Journal on Selected Areas in Communications , 2018 ,PP( 99 ):1.
TZANAKAKI A . Wireless-opti cal network convergence:enabling the 5G architecture to support operational and end-user services [J ] . IEEE CommunicationMagazine , 2017 , 55 ( 10 ): 184 - 192 .
NGMN Alliance . 5G white paper [R ] . 2015 .
PATEROMICHELAKIS E . Service-tailored user-plane design framework and architecture considerations in 5G radio access networks [J ] . IEEE Access , 2017 ( 5 ): 17089 - 17105 .
TALEB T , KSENTINI A , JÄNTTI R . Anything as a service for 5Gmobile systems [J ] . IEEE Network , 2016 , 30 ( 6 ): 84 - 91 .
VILALTA R . TelcoFog:a unified flexible fog and cloud computing architecture for 5G networks [J ] . IEEE CommunicationMagazine , 2017 , 55 ( 8 ): 36 - 43 .
MARKAKIS E . Computing,caching,and communication at the edge:the cornerstone for building a versatile 5G ecosystem [J ] . IEEE CommunicationMagazine , 2017 , 55 ( 11 ): 152 - 157 .
3GPP.Proposal for study on a next generation system architecture:S2-153703 [S ] . 2015 .
3GPP.System architecture foRthe 5G system:TS23.501 [S ] . 2018 .
5GPPP.View on 5G architecture [R ] . 2017 .
3GPP.Way forward on the overall 5G NR work plan [S ] . 2017 .
3GPP.NG-RAN; architecture description:TS38.401 [S ] . 2018 .
LIN Y , SHAO L , ZHU Z , et al . Wireless network cloud:architecture and system requirements [J ] . IBM Journal of Research &Development , 2010 , 54 ( 1 ): 1 - 12 .
SUNDARESAN K . FluidNet:a flexible cloud-based radio access network for small cells [J ] . IEEE/ACM Transactions on Networking , 2016 , 2 ( 2 ): 915 - 928 .
TANG J , WEN R , QUEK T , et al . Fully exploiting cloud computing to achieve a green and flexible C-RAN [J ] . IEEE CommunicationMagazine , 2017 , 55 ( 11 ): 40 - 46 .
BEYENE Y D , JANTTI R , RUTTIK K . Cloud-RANarchitecture for indoor DAS [J ] . IEEE Access , 2014 ( 2 ): 1205 - 1212 .
PARK S , CHAE C , BAHK S . Large-s cale antenna operation in heterogeneous cloud radio access networks:a partial centralization approach [J ] . IEEE Wireless Communications , 2015 , 22 ( 3 ): 32 - 40 .
MEERJAK , SHAMI A , REFAEY A . Hailing cloud empowered radio access networks [J ] . IEEE Wireless Communications , 2015 , 22 ( 1 ): 122 - 129 .
CHEN M , SAAD W , YIN C , et al . Echo state networks for proactive caching in cloud-based radio access networks withmobile users [J ] . IEEE Transactions on Wireless Communications , 2017 , 16 ( 6 ): 3520 - 3535 .
BONOMI F , MILITO R , ZHU J , et al . Fog computing and its role in the internet of things [C ] // Workshop on Mobile Cloud Computing,MCC’12,August 17,2012,Helsinki,Finland . New York:ACM Press , 2012 : 13 - 16 .
PENG M , YAN S , ZHANG K , et al . Fog-computing-based radio access networks:issues and challenges [J ] . IEEE Network , 2016 , 30 ( 4 ): 46 - 53 .
TANDON R , SIMEONE O . Harnessing cloud and edge synergies:toward an information theory of fog radio access networks [J ] . IEEE CommunicationMagazine , 2016 , 54 ( 8 ): 44 - 50 .
ZHANG H , QIU Y , CHU X , et al . Fog radio access networks:mobilitymanagement,interferencemitigation,and resource optimization [J ] . IEEE CommunicationMagazine , 2017 , 24 ( 6 ): 120 - 127 .
PENG M , ZHANG K . Recent advances in fog radio access networks:performance analysis and radio resource allocation [J ] . IEEE Access , 2016 ( 4 ): 5003 - 5009 .
LIANG K , ZHAO L , CHU X , et al . An integrated architecture for software defined and virtualized radio access networks with fog computing [J ] . IEEE Network , 2017 , 3 ( 1 ): 80 - 87 .
XIANG H , ZHOU W , DANESHMAND M , et al . Network slicing in fog radio access networks:issues and challenges [J ] . IEEE CommunicationMagazine , 2017 , 55 ( 12 ): 110 - 116 .
SHIH Y , CHUNG W , PANG A , et al . Enabling low-latency applications in fog-radio access networks [J ] . IEEE Network , 2017 , 31 ( 1 ): 52 - 58 .
KU Y , LIN D , LEE C , et al . 5G radio access network design with the fog paradigm:confluence of communications and computing [J ] . IEEE CommunicationMagazine , 2017 , 55 ( 4 ): 46 - 52 .
CHANG C , NIKAEIN N . RAN runtime slicing system for flexible and dynamic service execution environment [J ] . IEEE Access , 2018 ( 6 ): 34018 - 34042 .
KSENTINI A , NIKAEIN N . Toward enforcing network slicing on RAN:flexibility and resources abstraction [J ] . IEEE CommunicationMagazine , 2017 , 5 ( 6 ): 102 - 108 .
FERRUS R . On 5G radio access network slicing:radio interfaceprotocol features and configuration [J ] . IEEE CommunicationMagazine , 2018 , 56 ( 5 ): 184 - 192 .
HA V , LE L . End-to-end network slicing in virtualized OFDMA-based cloud radio access networks [J ] . IEEE Access , 2017 ( 5 ): 18675 - 18691 .
项弘禹 , 肖扬文 , 张贤 , 等 . 5G边缘计算和网络切片技术 [J ] . 电信科学 , 2017 , 33 ( 6 ): 54 - 63 .
XIANG H Y , XIAO Y W , ZHANG X , et al . Edge computing and network slicing technology in 5G [J ] . Telecommunications Science , 2017 , 33 ( 6 ): 54 - 63 .
LI R . Intelligent 5G:when cellular networksmeet artificial intelligence [J ] . IEEE Wireless Communications , 2017 , 24 ( 5 ): 175 - 183 .
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构