浏览全部资源
扫码关注微信
[ "王浩,男,博士,武汉第二船舶设计研究所工程师,主要研究方向为船舶信息化。" ]
[ "吕云飞,男,博士,武汉第二船舶设计研究所高级工程师,主要研究方向为船舶信息化。" ]
[ "陈源宝,男,博士,武汉第二船舶设计研究所工程师,主要研究方向为船舶信息化。" ]
[ "彭云飞,男,武汉第二船舶设计研究所工程师,主要研究方向为船舶总体技术。" ]
网络出版日期:2015-08,
纸质出版日期:2015-08-20
移动端阅览
王浩, 吕云飞, 陈源宝, 等. 基于格兰杰因果关系贝叶斯网络的大规模无线局域网流量预测方法[J]. 电信科学, 2015,31(8):46-50.
Hao Wang, Yunfei Lv, Yuanbao Chen, et al. Predicting Large-Scale WLAN Traffic via Granger Causality Based Bayesian Network[J]. Telecommunications science, 2015, 31(8): 46-50.
王浩, 吕云飞, 陈源宝, 等. 基于格兰杰因果关系贝叶斯网络的大规模无线局域网流量预测方法[J]. 电信科学, 2015,31(8):46-50. DOI: 10.11959/j.issn.1000-0801.2015201.
Hao Wang, Yunfei Lv, Yuanbao Chen, et al. Predicting Large-Scale WLAN Traffic via Granger Causality Based Bayesian Network[J]. Telecommunications science, 2015, 31(8): 46-50. DOI: 10.11959/j.issn.1000-0801.2015201.
研究了大规模无线局域网内的流量特性,发现不同接入点间的流量存在格兰杰因果关系。流量的格兰杰因果关系说明,可以通过多个存在因果关系的接入点的历史流量,提高对目标接入点的当前流量预测的准确性。通过贝叶斯网络对存在因果关系的接入点流量进行建模,并利用多个接入点的历史流量对目标接入点的流量进行预测,提高了预测的准确性。最后,通过接入点数量大于 100 个的无线局域网的实际流量数据,验证了该方法的有效性及准确性,建立了一套完整的数据特征分析、建模及预测的流量数据处理流程。
Granger causality existed between traffic at different access points of large-scale wireless LANs was discovered.The Granger causality illustrates that the historical traffic of access points that exist causality within target access points help predict the future of target access points with better accuracy than when considering information from the past of target access point alone.Bayesian network to model the causal relationship between access points and adopted a Gaussian mixture model(GMM)was used,as well as a weighted combination of several normal distribution functions in order to approximate the joint probability distribution in Bayesian networks.Finally,the traffic data in large-scale wireless LANs was imported,having hundreds of access points,to verify the accuracy of the proposed method,and a processing flow of analysis,modeling and prediction of traffic flow data was established.
Petkov V , Obraczka K . The case for using traffic forecasting in schedule-based channel access . Proceedings of Consumer Communications and Networking Conference(CCNC) , Las Vegas,NV,USA , 2011 : 208 ~ 212
Petkov V , Obraczka K . Collision-free medium access based on traffic forecasting . Proceedings of 2012 IEEE International Symposium on a World of Wireless,Mobile and Multimedia Networks(WoWMoM) , San Francisco,CA,USA , 2012 : 1 ~ 9
Chen C , Pei Q , Ning L . Forecasting IEEE 802.11 traffic using seasonal ARIMA model . Proceedings of International Forum on Computer Science-Technology and Applications , Chongqing,China , 2009 : 347 ~ 350
Suarez C A H , Parra O S , Martinez L F P . Traffic model based on time series to forecast traffic future values within a Wi-Fi data network . Proceedings of 4th International Conference on Wireless Communications,Networking and Mobile Computing , Dalian,China , 2008 : 1 ~ 4
Xu Y . Traffic model based on time series to forecast traffic future values within a Wi-Fi data network . Proceedings of 4th International Conference on Wireless Communications,Networking and Mobile Computing , Dalian,China , 2007 : 1921 ~ 1924
Xiang L , Ge X , Zhang K , et al . A self-similarity frame traffic model based on the frame components in IEEE 802.11 networks . Proceedings of Conference on Computational Science and Engineering , Vancouver,BC,Canada , 2009 : 955 ~ 960
Zhang K , Ge X , Liu C , et al . Analysis of frame traffic characteristics in IEEE 802.11 networks . Proceedings of Conference on Communications and Networking in China , Troy,New York,USA , 2009 : 1 ~ 5
Liu C , Ge X , Xiang L , et al . A frame traffic control algorithm for IEEE 802.11 WLAN . Proceedings of 2010 IEEE/ACM Int’l Conference on & Int’l Conference on Cyber,Physical & Social Computing(CPSCom) , Hangzhou,China , 2010 : 479 ~ 483
Sun S , Zhang C , Yu G . A Bayesian network approach to traffic flow forecasting . IEEE Transactions on Intelligent Transportation Systems , 2006 , 7 ( 1 ): 124 ~ 132
Rao C R . Linear Statistical Inference and Its Applications , 2nd Ed . New York : Wiley , 1973
0
浏览量
633
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构