浏览全部资源
扫码关注微信
[ "崔秀国(1974-),男,华为技术有限公司Fellow,主导华为波分100 Gbit/s/200 bit/s/400 bit/s 开发,开创同步 OTN 架构,业界率先解决大容量 OTN 系统可实现性问题,带领团队完成OTN ASIC套片研发,推进 OTN 产品商用化进程,主导 NG SDH平台的架构设计与规划。" ]
[ "刘翔(1970-),男,博士,华为技术有限公司美国研究所光网络高级专家,美国光学学会会士,美国光学快报副主编,2016年光纤通信会议(OFC)的技术委员会主席。曾在贝尔实验室从事了14 年的高速光纤传输技术研发工作,如40 Gbit/s/100 Gbit/s/400 Gbit/s/1 Tbit/s传输。已撰写300多篇学术论文,拥有60多项美国专利,曾荣获中国国家发明奖二等奖、贝尔实验室总裁奖两次及华为固网总裁奖。" ]
[ "操时宜(1975-),男,华为技术有限公司高端专家、传送技术研究技术负责人,主要从事光传送网络架构研究、光交换技术研究工作等。" ]
[ "周敏(1984-),男,博士,华为技术有限公司传送产品线营销专家,主要从事光网络领域的技术研究与产业营销工作,目前已发表学术论文14 篇,拥有国家发明专利16项。" ]
网络出版日期:2016-05,
纸质出版日期:2016-05-20
移动端阅览
崔秀国, 刘翔, 操时宜, 等. 光纤通信系统技术的发展、挑战与机遇[J]. 电信科学, 2016,32(5):34-43.
Xiuguo CUI, Xiang LIU, Shiyi CAO, et al. Development,challenge and opportunity of optical fiber communication system technologies[J]. Observation and communication, 2016, 32(5): 34-43.
崔秀国, 刘翔, 操时宜, 等. 光纤通信系统技术的发展、挑战与机遇[J]. 电信科学, 2016,32(5):34-43. DOI: 10.11959/j.issn.1000-0801.2016129.
Xiuguo CUI, Xiang LIU, Shiyi CAO, et al. Development,challenge and opportunity of optical fiber communication system technologies[J]. Observation and communication, 2016, 32(5): 34-43. DOI: 10.11959/j.issn.1000-0801.2016129.
光纤通信系统是现代互联网时代的核心支撑系统之一。首先概述了光纤通信系统关键技术的发展,并分析了其在蓬勃发展的云时代中的发展驱动力及在此驱动力下未来光纤通信系统面临的挑战与机遇。结合这些挑战与机遇,分别从光纤通信系统总体网络架构、骨干网络技术、城域网络技术、接入网络技术和基于软件定义网的新型光传送网络技术等多个方面,综合阐述光纤通信系统技术在云时代的演进发展趋势,以更有效地为未来互联网、数据中心互联、物联网、5G移动网络及智慧家居和智慧城市提供强有力的技术支撑。
Optical fiber communication system is one of the core supporting systems of the modern internet age.Firstly
major recent technological advances in optical fiber communication system were summarized.Then
the driving forces for its future development in the emerging cloud era
the future challenges and opportunities that it faced were analyzed.With the consideration of these challenges and opportunities
the future evolution paths in key areas such as optical fiber communication system overall network architectures
core network technologies
metro network technologies
access network technologiesand novel software-defined optical transport network technologies in the upcoming cloud erawere described
aiming to support future generations of internet
data center interconnect
internet of things and 5G mobile network
as well as the smart home and smart city initiativesmore effectively.
KAMINOW I P , KOCH T L . Optical fiber telecommunications Ⅳ [M ] . Salt Lake : Academic Press , 2002 .
KAMINOW I P . Optical fiber telecommunications Ⅴ [M ] . Salt Lake : Academic Press , 2007 .
KAMINOW I P , LI T , WILLNERA E . Optical fiber telecommunications Ⅵ [M ] . Salt Lake : Academic Press , 2013 .
WELLBROCK G , WANG T , ISHIDA O . New paradigms in optical communications and networks [J ] . IEEE Communications Magazine , 2013 , 51 ( 51 ): 22 - 23 .
TOMKOS I , MUKHERJEE B , KOROTKY S K . The evolution of optical networking [J ] . Proceedings of the IEEE , 2012 , 100 ( 5 ): 1017 - 1022 .
XU C , LIU X , WEI X . Differential phase-shift keying for high spectral efficiency optical transmissions [J ] . IEEE Journal of Selected Topics in Quantum Electronics , 2004 , 10 ( 2 ): 281 - 293 .
JANSEN S L , VAN D B D , SPINNLER B , et al . Optical phase conjugation for ultra long-haul phase-shift-keyed transmission [J ] . Journal of Lightwave Technology , 2006 , 24 ( 1 ): 54 - 64 .
HO K P . Phase-modulated optical communication systems [M ] . New York : Springer , 2005 .
LOWERY A J , LIANG D , . ARMSTRONG J.Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems [C ] // 2006 National Fiber Optic Engineers Conference , March 5 - 10 , 2006 , Anaheim,California . New Jersey : IEEE Press , 2006 : 1 - 3 .
SHIEH W , ATHAUDAGE C . Coherent optical orthogonal frequency division multiplexing [J ] . Electronics Letters , 2006 , 42 ( 10 ): 587 - 589 .
SAVORY S J . Digital filters for coherent optical receivers [J ] . Optics Express , 2008 , 16 ( 2 ): 804 - 817 .
SHIEH W , DIORDJEVIC I . Orthogonal frequency division multiplexing for optical communications [M ] . Salt Lake : Academic Press , 2010 .
WELLBROCK G , WANG T , ISHIDA O , et al . New paradigms in optical communications and networks [J ] . IEEE Communications Magazine , 2013 , 51 ( 51 ): 22 - 23 .
WANG , TINGWELLBROCK , GLENNISHIDA . Next generation optical transport beyond 100G [J ] . IEEE Communications Magazine , 2012 , 50 ( 2 ): s10 - s11 .
BOYDEN E S , FENG Z , ERNST B . Millisecond-timescale,genetically targeted optical control of neural activity [J ] . Nature Neuroscience , 2005 , 8 ( 9 ): 1263 - 1268 .
CHANDRASEKHAR S , LIU X , ZHU B , et al . Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber [C ] // 35th European Conference on Optical Communication , Sept 20 - 24 , 2009 , Vienna,Austria . New Jersey : IEEE Press , 2009 .
LIU X , CHANDRSEKHAR S , WINZER P J . Digital signal processing techniques enabling multi-Tb/s superchannel transmission [J ] . IEEE Signal Processing Magazine , 2014 , 31 ( 2 ): 16 - 24 .
LIU X , CHANDRSEKHAR S . Superchannel for next-generation optical networks [C ] // Optical Fiber Communications Conference and Exhibition(OFC) , March 9 - 13 , 2014 , San Francisco,CA,USA . New Jersey : IEEE Press , 2014 : 1 - 33 .
ZHOU Y R , SMITH K , PAYNE R , et al . Field trial demonstration of real-time optical superchannel transport up to 5.6 Tb/s over 359 km and2 Tb/s over a live 727km flexible grid link using 64G [J ] . Journal of Lightwave Technology , 2015 , 34 ( 2 ): 805 - 811 .
JINNO M , TAKARA H , KOZICKI B , et al . Spectrum-efficient and scalable elastic optical path network:architecture,benefits,and enabling technologies . IEEE Communications Magazine , 2009 , 47 ( 11 ): 66 - 73 .
Characteristics of multi-degree reconfigurableoptical add/drop multiplexers:ITU-T Recommendation G.672 [S ] . 2012 .
ANSHENG L , RICHARD J , LING L , et al . A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor [J ] . Nature , 2004 , 427 ( 6975 ): 615 .
YOO S J B . Optical packet and burst switching technologiesfor the future photonic Internet [J ] . Journal of Lightwave Technology , 2006 , 24 ( 12 ): 4468 - 4492 .
DENG N , YANG Y , CHAN CK , et al . Intensity-modulated labeling and all-optical label swapping on angle-modulated optical packets [J ] . IEEE Photonics Technology Letters , 2004 , 16 ( 4 ): 1218 - 1220 .
GEORGIOS S Z , JOAN T , NORBERTO A , et al . A novel metro architecture for flexible multi-granular services [J ] . Optics Express , 2011 , 19 ( 26 ): B509 - B514 .
XU Q F , SCHMIDT B , PRADHAN S , et al . Micrometre-scale silicon electro-optic modulator [J ] . Nature , 2005 , 435 ( 7040 ): 325 - 327 .
SOLOMON A , FENGNIAN X , VLASOV Y A . Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects [J ] . Nature , 2010 , 464 ( 7285 ): 80 - 84 .
SUN C , WADE M T , LEE Y , et al . Single-chip microprocessor that communicates directly using light [J ] . Nature , 2015 , 528 ( 7583 ): 534 - 538 .
PHARE C T , LEE Y H D , CARDENAS J , et al . Graphene electro-optic modulator with 30 GHz bandwidth [J ] . Nature Photonics , 2015 , 9 ( 8 ).
SEOK T J , QUACK N , HAN S , et al . Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers [J ] . Optica , 2016 , 3 ( 1 ): 64 - 70 .
TAN D T H , SUN P C , FAINMAN Y , et al . Monolithic nonlinear pulse compressor on a silicon chip [J ] . Nature Communications , 2010 , 1 ( 8 ): 173 - 184 .
FERRERA M , PARKAZZARI Y , RAZZARI L , et al . On-chip CMOS-compatible all-optical integrator [J ] . Nature Communications , 2010 , 1 ( 3 ): 605 - 629 .
FAN L , WANG J , VARGHESE L T , et al . An all-silicon passive optical diode [J ] . Science , 2012 , 335 ( 6067 ): 447 - 450 .
YAN S , DONG J , ZHENG A , et al . Chip-integrated optical power limiter based on an all-passive micro-ring resonator [J ] . Scientific Reports , 2014 ( 4 ): 6676 .
LIU L , DONG J , GAO D , et al . On-chip passive three-port circuit of all-optical ordered-route transmission [J ] . Scientific Reports , 2014 ( 5 ).
KURAMOCHI E , NOZAKI K , SHINYA A , et al . Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip [J ] . Nature Photonics , 2014 , 8 ( 6 ): 474 - 481 .
FAKONAS J S , LEE H , KELAITA Y A , et al . Two-plasmon quantum interference [J ] . Nature Photonics , 2014 , 8 ( 4 ): 317 - 320 .
SILVERSTONE J W , SANTAGATI R , BONNEAU D , et al . Qubit entanglement between ring-resonator photon-pair sources on a silicon chip [J ] . Nature Communications , 2015 ( 6 ).
KHAN M H , SHEN H , XUAN Y , et al . Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper [J ] . Nature Photonics , 2010 , 4 ( 2 ): 117 - 122 .
SUN J , TIMURDOGAN E , YAACOBI A , et al . Large-scale nanophotonic phased array [J ] . Nature , 2013 , 493 ( 7431 ): 195 - 199 .
WANG J , SHEN H , FAN L , et al . Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip . Nature Communications , 2015 ( 6 ): 5957 .
MELIKYAN A , ALLOATTI L , MUSLIJA A , et al . High-speed plasmonic phase modulators [J ] . Nature Photonics , 2014 , 8 ( 8 ): 229 - 233 .
ANSELL D , RADKO I P , HAN Z , et al . Hybrid graphene plasmonic waveguide modulators [J ] . Nature Photonics , 2015 ( 6 ).
HAFFNER C , HENI W , FEDORYSHYN Y , et al . All-plasmonic mach-zehnder modulator enabling optical high-speed communication at the microscale [J ] . Nature Photonics , 2015 , 9 ( 8 ).
0
浏览量
3608
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构