浏览全部资源
扫码关注微信
1. 浙江工业大学机械工程学院,浙江 杭州 310032
2. 绍兴文理学院机械与电气工程学院,浙江 绍兴 312000
[ "吴亚萍(1979- ),女,浙江工业大学机械工程学院博士生,绍兴文理学院机械与电气工程学院实验师,主要研究方向为智能算法优化、数据挖掘、计算机网络通信等" ]
[ "董红召(1969- ),男,博士,浙江工业大学机械工程学院教授,主要研究方向为智能系统、数据挖掘等" ]
[ "林盈盈(1979- ),女,浙江工业大学机械工程学院博士生,主要研究方向为信息通信等" ]
[ "柳菁(1979- ),女,绍兴文理学院机械与电气工程学院实验师,主要研究方向为计算机应用、算法优化等" ]
网络出版日期:2020-03,
纸质出版日期:2020-03-20
移动端阅览
吴亚萍, 董红召, 林盈盈, 等. 混沌改进鱼群算法及其在工业控制网络异常检测中的应用[J]. 电信科学, 2020,36(3):27-33.
Yaping WU, Hongzhao DONG, Yingying LIN, et al. Improved fish swarm algorithm based on chaos and its application in abnormal detection of industrial control network[J]. Telecommunications science, 2020, 36(3): 27-33.
吴亚萍, 董红召, 林盈盈, 等. 混沌改进鱼群算法及其在工业控制网络异常检测中的应用[J]. 电信科学, 2020,36(3):27-33. DOI: 10.11959/j.issn.1000-0801.2020068.
Yaping WU, Hongzhao DONG, Yingying LIN, et al. Improved fish swarm algorithm based on chaos and its application in abnormal detection of industrial control network[J]. Telecommunications science, 2020, 36(3): 27-33. DOI: 10.11959/j.issn.1000-0801.2020068.
人工鱼群算法作为一种新型的仿生群体智能优化算法已成功地应用于各种优化问题及实际工程领域。然而,在复杂优化问题方面,受目标函数存在相对较大数量的局部极值的影响,收敛速度慢、早熟等缺陷难以避免地存在。在基本人工鱼群算法中引入具有随机性、遍历性的混沌理论,构建了一种改进算法,以使得人工鱼群搜索能够规避可能存在的局部极值状况。在工业控制网络异常检测中进行仿真应用,验证了算法的有效性。与基本的人工鱼群算法相比,混沌改进人工鱼群算法可使得算法在局部极值附近长时间搜索的状况得到有效避免,在全局收敛方面算法有更佳表现,且搜索效率更为突出。
Artificial fish swarm algorithm as a new type of bionic swarm intelligence optimization algorithm has been successfully used in a variety of optimization problems and practical engineering field
but when faced with the complex optimization problems
especially the multiple extreme value of peak and multimodal function optimization problems
due to the objective function has many local minima
inevitably there are defects such as premature and slow convergence speed.The random and ergodic theory was introduced into the basic artificial fish swarm algorithm
and an improved algorithm was constructed to make artificial fish swarm search avoid possible local extremum.The effectiveness of the algorithm was validated in the simulation application in industrial control network anomaly detection.Compared with the basic artificial fish school algorithm
the chaos improved artificial fish swarm algorithm can effectively avoid the long-term search of the algorithm near the local extreme value.The algorithm has better performance in terms of global convergence and the search efficiency is more prominent.
李晓磊 . 一种新型的智能优化方法——人工鱼群算法 [D ] . 杭州:浙江大学 , 2003 .
LI X L . A new intelligent optimization method—artificial fish swarm algorithm [D ] . Hangzhou:Zhejiang University , 2003 .
袁芳芳 . 人工鱼群和 K 均值算法相融合的网络入侵检测 [J ] . 计算机仿真 , 2013 , 30 ( 9 ): 274 - 277 .
YUAN F F . Networks intrusion detection based on K-means clustering algorithm and artificial fish warm algorithm [J ] . Computer Simulation , 2013 , 30 ( 9 ): 274 - 277 .
易新兵 , 杨凯 . 复合混沌-人工鱼群混合算法的改进及性能研究 [J ] . 计算机工程与科学 , 2013 , 35 ( 8 ): 89 - 95 .
YI X B , YANG K . Fusion image quality evaluation method based on human perception [J ] . Computer Engineering and Science , 2013 , 35 ( 8 ): 89 - 95 .
朱文静 , 白静 . 一种混沌人工鱼群算法对 SVM 参数的优化及应用 [J ] . 微电子学与计算机 , 2016 , 33 ( 3 ): 89 - 93 .
ZHU W J , BAI J . Optimization and application of chaotic artifi-cial fish swarm algorithm to SVM parameters [J ] . Microelec-tronics and Computers[J].Microelectronics & Computer , 2016 , 33 ( 3 ): 89 - 93 .
陈汉宇 , 王华忠 , 颜秉勇 . 基于CUDA和布谷鸟算法的KVM在工控入侵检测中的应用 [J ] . 华东理工大学学报(自然科学版) , 2019 , 45 ( 1 ): 101 - 109 .
CHEN H Y , WANG H Z , YAN B Y . Application of CUDA and cuckoo algorithm based SVM in industrial control system intru-sion detection [J ] . Journal of East China University of Science and Technology , 2019 , 45 ( 1 ): 101 - 109 .
陈冬青 , 张普含 , 王华忠 . 基于 MIKPSO—SVM 方法的工业控制系统入侵检测 [J ] . 清华大学学报(自然科学版) , 2018 , 58 ( 4 ): 380 - 386 .
CHEN D Q , ZHANG P H , WANG H Z . Intrusion detection for industrial control systems based on an improved SVM me-thod [J ] . Journal of Tsinghua University (Science & Technol-ogy) , 2018 , 58 ( 4 ): 380 - 386 .
刘万军 , 秦济韬 , 曲海成 . 基于改进单类支持向量机的工业控制网络入侵检测方法 [J ] . 计算机应用 , 2018 , 38 ( 5 ): 1360 - 1365 ,1371.
LIU W J , QIN J T , QU H C . Intrusion detection algorithm of industrial control network based on improved one-class support vector machine [J ] . Journal of Computer Applications , 2018 , 38 ( 5 ): 1360 - 1365 ,1371.
闫腾飞 . 基于遗传算法优化的OCSVM双轮廓模型异常检测算法 [J ] . 计算机应用研究 , 2019 , 36 ( 11 ): 3361 - 3364 .
YAN T F . Anomaly detection algorithm based on OCSVM double contour model of genetic algorithm optimization for in-dustrial control system [J ] . Application Research of Computer , 2019 , 36 ( 11 ): 3361 - 3364 .
於帮兵 , 王华忠 , 颜秉勇 . 基于长短时记忆网络的工业控制系统入侵检测 [J ] . 信息与控制 , 2018 , 47 ( 1 ): 54 - 59 .
YU B B , WANG H Z , YAN B Y . Intrusion detection of industri-al control system based on long short term memory [J ] . Informa-tion and Control , 2018 , 47 ( 1 ): 54 - 59 .
刘爱军 , 杨育 . 混沌模拟退火粒子群算法研究及应用 [J ] . 浙江大学学报(工学版) , 2013 , 47 ( 10 ): 1722 - 1730 .
LIU A J , YANG Y . Research and application of chaotic simu-lated annealing particle swarm optimization [J ] . Journal of Zhe-jiang University (Engineering) , 2013 , 47 ( 10 ): 1722 - 1730 .
张文安 , 洪榛 , 朱俊威 , 等 . 工业控制系统网络入侵检测方法综述 [J ] . 控制与决策 , 2019 , 34 ( 11 ): 2277 - 2288 .
ZHANG W A , HONG Z , ZHU J W , et al . A survey of network intrusion detection methods for industrial control systems [J ] . Control and Decision , 2019 , 34 ( 11 ): 2277 - 2288 .
THOMAS M , WEI G . Industrial control system traffic data sets for intrusion detection research [C ] // Information and Communication Technology.[S.l.:s.n] . 2014 .
0
浏览量
220
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构