浏览全部资源
扫码关注微信
[ "徐海勇(1970- ),男,中移动信息技术有限公司总经理、高级工程师,主要研究方向为移动通信、互联网、大数据" ]
[ "陶涛(1972- ),男,博士,中移动信息技术有限公司副总经理、高级工程师,主要研究方向为大数据、通信技术" ]
[ "黄岩(1976- ),男,中移动信息技术有限公司电子渠道运营中心总经理、高级工程师,主要研究方向为大数据、能力开放" ]
[ "唐崔巍(1992- ),男,中移动信息技术有限公司工程师,主要研究方向为社交网络分析、机器学习算法" ]
[ "张兆静(1990- ),女,中移动信息技术有限公司工程师,主要研究方向为流量产品运营、数据分析" ]
[ "吴晶(1979- ),女,博士,中移动信息技术有限公司高级工程师,主要研究方向为计算机应用技术、数据挖掘、用户行为分析" ]
网络出版日期:2020-08,
纸质出版日期:2020-08-20
移动端阅览
徐海勇, 陶涛, 黄岩, 等. 基于社交网络分析的流量红包客户挖掘与传播模式[J]. 电信科学, 2020,36(8):139-150.
Haiyong XU, Tao TAO, Yan HUANG, et al. Data red envelope clients mining and communication model based on social network analysis[J]. Telecommunications science, 2020, 36(8): 139-150.
徐海勇, 陶涛, 黄岩, 等. 基于社交网络分析的流量红包客户挖掘与传播模式[J]. 电信科学, 2020,36(8):139-150. DOI: 10.11959/j.issn.1000-0801.2020128.
Haiyong XU, Tao TAO, Yan HUANG, et al. Data red envelope clients mining and communication model based on social network analysis[J]. Telecommunications science, 2020, 36(8): 139-150. DOI: 10.11959/j.issn.1000-0801.2020128.
电信运营商持续创新流量经营模式与手段,将流量营销与社交化的红包活动相结合,创新推出流量红包活动,激发客户流量使用兴趣。面对社交化流量红包客户特征与传播模式的研究痛点及当前社群建模算法较单一的技术现状,详细研究、对比 6 种社群建模算法的应用效果,筛选出适合流量红包的最优算法,并定位分析核心价值客户群的特征。仿真结果显示,Multi-Level 算法在流量红包场景中表现更好,基于该算法挖掘种子客户、高价值客户、低价值客户和沉默客户 4 种特征客户群的社交网络结构。社交网络分群结论为运营商精准营销、精准推送等营销活动以及沉默客户促活、流失客户挽回等客户运营管理提供了有效指导。
Telecom operators innovate continually in data management modes and combine data marketing with social red envelope activities
consequently launching data red envelope activities
which stimulates customers’ interest of data using.Faced with the research pain points of customer characteristics and propagation modes of socialized traffic red envelopes and the current status of the single community modeling algorithm
the detailed research and comparison of the application effects of the six community modeling algorithms were conducted to select the optimal traffic envelope algorithm
and the characteristics of the core value customer groups were located and analyzed.Results show that Multi-Level algorithm performs better in data red-envelope scenario.Based on this algorithm
four characteristic customer groups were mined
namely seed customer
high-value customer
low-value customer and silent customer.The social network clustering conclusion provided effective guidance for operators’ precise marketing
precise push and other marketing activities
as well as other customer operation management such as silent customer activation
lost customer recovery and so on.
谷红勋 , 杨珂 . 基于大数据的移动用户行为分析系统与应用案例 [J ] . 电信科学 , 2016 , 32 ( 3 ): 139 - 146 .
GU H X , YANG K . Mobile user behavior analysis system and applications based on big data [J ] . Telecommunications Science , 2016 , 32 ( 3 ): 139 - 146 .
吴信东 , 李毅 , 李磊 . 在线社交网络影响力分析 [J ] . 计算机学报 , 2014 ( 4 ): 735 - 752 .
WU X D , LI Y , LI L . Influence analysis of online social networks [J ] . Chinese Journal of Computers , 2014 ( 4 ): 735 - 752 .
毛佳昕 , 刘奕群 , 张敏 , 等 . 基于客户行为的微博客户社会影响力分析 [J ] . 计算机学报 , 2014 ( 4 ): 791 - 800 .
MAO J X , LIU Y Q , ZHANG M , et al . Social influence analysis of mirco-blog user based on user behavior [J ] . Chinese Journal of Computers , 2014 ( 4 ): 791 - 800 .
全拥 , 贾焰 , 张良 , 等 . 在线社交网络个体影响力算法测试与性能评估 [J ] . 通信学报 , 2018 , 39 ( 10 ): 1 - 10 .
QUAN Y , JIA Y , ZHANG L , et al . Performance analysis and testing of personal influence algorithm in online social net-works [J ] . Journal on Communications , 2018 , 39 ( 10 ): 1 - 10 .
王祯骏 , 王树徽 , 张维刚 , 等 . 基于社交内容的潜在影响力传播模型 [J ] . 计算机学报 , 2016 , 39 ( 8 ): 1528 - 1540 .
WANG Z J , WANG S H , ZHANG W G , et al . Social content based latent influence propagation model [J ] . Chinese Journal of Computers , 2016 , 39 ( 8 ): 1528 - 1540 .
NEWMAN M E J . Fast algorithm for detecting community structure in networks [J ] . Physical Review E , 2004 , 69 ( 6 ):066133.
RAGHAVAN U N , RÉKA A , KUMARA S . Near linear time algorithm to detect community structures in large-scale networks [J ] . Physical Review E , 2007 , 76 ( 3 ):036106.
王庚 , 宋传超 , 盛玉晓 , 等 . 基于标签传播的社区挖掘算法研究综述 [J ] . 计算机技术与发展 , 2013 ( 12 ): 69 - 73 .
WANG G , SONG C C , SHENG Y X , et al . Research summary on communities mining algorithm based on label propagation [J ] . Computer Technology and Development , 2013 ( 12 ): 69 - 73 .
CLAUSET A , NEWMAN M E J , MOORE C . Finding community structure in very large networks [J ] . Physical Review E , 2004 , 70 ( 6 ): 1539 - 3755 .
NEWMAN M E J . Finding community structure in networks using the eigenvectors of matrices [J ] . Physical Review E , 2006 , 74 ( 3 ):036104.
PONS P , LATAPY M . Computing communities in large networks using random walks [J ] . Journal of Graph Algorithms and Applications , 2006 , 10 ( 2 ): 191 - 218 .
ROSVALL M , BERGSTROM C T . Maps of random walks on complex networks reveal community structure [J ] . Proceedings of the National Academy of Sciences , 2008 , 105 ( 4 ): 1118 - 1123 .
BLONDEL V D , GUILLAUME J L , LAMBIOTTE R , et al . Fast unfolding of communities in large networks [J ] . Journal of Statistical Mechanics:Theory and Experiment , 2008 ( 10 ):P10008.
王志宏 , 杨震 . 人工智能技术研究及未来智能化信息服务体系的思考 [J ] . 电信科学 , 2017 , 33 ( 5 ): 1 - 11 .
WANG Z H , YANG Z . Research on artificial intelligence technology and the future intelligent information service archi-tecture [J ] . Telecommunications Science , 2017 , 33 ( 5 ): 1 - 11 .
0
浏览量
533
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构