浏览全部资源
扫码关注微信
1. 中国移动通信有限公司研究院,北京 100053
2. 中国移动通信集团广西有限公司,广西 南宁 530022
[ "邱亚星(1990- ),女,中国移动通信有限公司研究院工程师,主要从事无线大数据、无线网络智能优化技术以及无线网络智能化节能技术的研究与应用工作" ]
[ "王希栋(1984- ),男,中国移动通信有限公司研究院工程师,主要从事无线网络节能技术以及绿色业务、高效网络的协同优化研究工作" ]
[ "边森(1980- ),男,中国移动通信有限公司研究院工程师,主要从事TD-SCDMA/TD-LTE绿色通信、新能源基站等领域的研究工作" ]
[ "岳磊(1981- ),男,中国移动通信集团广西有限公司高级工程师,主要从事无线网络规划与优化领域的研究工作" ]
网络出版日期:2020-07,
纸质出版日期:2020-07-20
移动端阅览
邱亚星, 王希栋, 边森, 等. 基于聚类分析和深度学习的多频多模网络负载均衡优化[J]. 电信科学, 2020,36(7):156-162.
Yaxing QIU, Xidong WANG, Sen BIAN, et al. Load balancing based on clustering analysis and deep learning for multi-frequency and multi-mode network[J]. Telecommunications science, 2020, 36(7): 156-162.
邱亚星, 王希栋, 边森, 等. 基于聚类分析和深度学习的多频多模网络负载均衡优化[J]. 电信科学, 2020,36(7):156-162. DOI: 10.11959/j.issn.1000-0801.2020159.
Yaxing QIU, Xidong WANG, Sen BIAN, et al. Load balancing based on clustering analysis and deep learning for multi-frequency and multi-mode network[J]. Telecommunications science, 2020, 36(7): 156-162. DOI: 10.11959/j.issn.1000-0801.2020159.
负载均衡问题是LTE多频多模网络要解决的重大问题。多频多模网络结构复杂,负载均衡涉及的参数达数百个,仅依靠人工经验很难进行精细化配置。为解决多频多模网络的负载均衡问题,解决现网运维的难点与痛点,提出一种基于机器学习的多频多模网络负载均衡方案。首先选取关键指标对网络场景进行划分,然后利用机器学习技术挖掘出不同场景下的最佳参数配置建议。经验证,机器学习技术可以大大提高参数配置的质量和效率,做到精细化参数配置。
Load balancing is a huge challenge for LTE multi-frequency and multi-mode network.Hundreds of parameters are involved in load balancing for the complex network structure.Therefore
it is difficult to perform precise and meticulous configuration only relying on human experience.In order to cope with the challenge
a load balancing scheme based on clustering analysis and deep learning was proposed.Firstly
the key indicators were selected to identify the network scenes
and then big data and deep learning technologies were used to mine the relationship between data.Finally
the optimum system parameters for different network scenes were found.It has been proved that machine learning technology can greatly improve the accuracy and the efficiency of parameter configuration.
3GPP.Evolved universal terrestrial access network (E-UTRAN);layer 2 measurements:TS36.314 [S ] . 2010 .
郭佳睿 , 魏进武 , 张云勇 . 大数据助力运营商提升规模化运营核心力策略 [J ] . 电信科学 , 2018 , 34 ( 1 ): 120 - 125 .
GUO J R , WEI J W , ZHANG Y Y . Strategies for enhancing core capability of large-scalely operation for national telecom operators assisted by big data [J ] . Telecommunications Science , 2018 , 34 ( 1 ): 120 - 125 .
周一青 , 李国杰 . 未来移动通信系统中的通信与计算融合 [J ] . 电信科学 , 2018 , 34 ( 3 ): 1 - 7 .
ZHOU Y Q , LI G J . Convergence of communication and computing in future mobile communication systems [J ] . Telecommunications Science , 2018 , 34 ( 3 ): 1 - 7 .
王志宏 , 杨震 . 人工智能技术研究及未来智能化信息服务体系的思考 [J ] . 电信科学 , 2017 , 33 ( 5 ): 1 - 11 .
WANG Z H , YANG Z . Research on artificial intelligence technology and the future intelligent information service architecture [J ] . Telecommunications Science , 2017 , 33 ( 5 ): 1 - 11 .
许波 , 付雷 , 张强 . LTE多载波负荷均衡优化浅析 [J ] . 邮电设计技术 , 2018 ( 7 ): 31 - 35 .
XU B , FU L , ZHANG Q . Analysis of LTE multi-carrier load balancing optimization [J ] . Posts and Telecommunications Design Technology , 2018 ( 7 ): 31 - 35 .
TIAN S , LI X , JI H . Mobility prediction scheme for optimized load balance in heterogeneous networks [C ] // Proceedings of 2018 IEEE Globecom Workshops . Piscataway:IEEE Press , 2018 : 1 - 6 .
XU Y , XU W , WANG Z , et al . Deep reinforcement learning based mobility load balancing under multiple behavior policies [C ] // Proceedings of 2019 IEEE International Conference on Communications (ICC) . Piscataway:IEEE Press , 2019 : 1 - 6 .
0
浏览量
516
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构