浏览全部资源
扫码关注微信
1. 亚信科技(中国)有限公司通信人工智能创新实验室,北京 100193
2. 加州大学伯克利分校电子工程与计算机科学系,旧金山 伯克利 94720
[ "欧阳晔(1981- ),男,博士,亚信科技(中国)有限公司首席技术官,国家特聘专家,北京市政府特聘专家,主要研究方向为移动通信、人工智能、数据科学、科技研发创新与管理" ]
[ "杨爱东(1984- ),男,博士,亚信科技(中国)有限公司通信人工智能实验室数据科学家,主要研究方向为5G通信人工智能技术、超宽带无线通信技术、高级信号处理技术、机器学习与深度学习" ]
[ "孟凡语(1998- ),男,美国加州大学伯克利分校电子工程与计算机科学系在读,主要研究方向为机器学习与深度学习" ]
网络出版日期:2020-06,
纸质出版日期:2020-06-20
移动端阅览
欧阳晔, 杨爱东, 孟凡语. 一种博弈论辅助的机器学习算法检测用户流失行为[J]. 电信科学, 2020,36(6):79-89.
Ye OUYANG, Aidong YANG, Fanyu MENG. A game theory-assisted machine learning methodology for subscriber churn behaviors detection[J]. Telecommunications science, 2020, 36(6): 79-89.
欧阳晔, 杨爱东, 孟凡语. 一种博弈论辅助的机器学习算法检测用户流失行为[J]. 电信科学, 2020,36(6):79-89. DOI: 10.11959/j.issn.1000-0801.2020164.
Ye OUYANG, Aidong YANG, Fanyu MENG. A game theory-assisted machine learning methodology for subscriber churn behaviors detection[J]. Telecommunications science, 2020, 36(6): 79-89. DOI: 10.11959/j.issn.1000-0801.2020164.
中国在2019年11月底正式实施已经试行了9年的携号转网政策。该政策会加强通信市场的流动性和竞争性,使运营商用户流失的问题更加突出。提出、验证并产品化了一种博弈论辅助的机器学习方案,以帮助运营商主动应对携号转网市场的竞争。所提方案为运营商提供了一种机器学习模型,检测用户的携转倾向,并给予差异化待遇。实验结果证明,所提方案能够指引运营商制定有针对性的携号转网策略,准确识别出有携入或者携出倾向的“异常”用户。此外,所提方案已被成功地产品化,极大地提高了运营商的营销效率,增加了用户的满意度,为中国某主要运营商减少了大约50%的用户流失。
At the end of November 2019
China officially implemented the number portability policy (MNP) that has been in trial for 9 years.The policy will strengthen the liquidity and competitiveness of the telecommunication market
making the problem of subscriber churn more prominent.A game theory-assisted machine learning methodology was proposed
verified and commercialized timely
which could help mobile network operator (MNO) actively respond to competition in the MNP market.The proposed methodology provides MNO with a machine learning model to detect subscriber portability and give differentiated treatment.Experimental results show that the proposed methodology can guide MNOs to make a targeted MNP strategy
and precisely identify “abnormal” subscribers who tend to churn-out and potential new subscribers who may churn-in.In addition
the proposed methodology has been successfully commercialized
greatly improving the marketing efficiency of operators
increasing user satisfaction
and reducing the loss of users by about 50% for a tier-1 MNO in China.
MAICAS J P , POLO Y , SESE J . Reducing the level of switching costs in mobile communications:the case of mobile number portability [J ] . Telecommunications Policy , 2009 , 33 ( 9 ): 544 - 554 .
OTSUKA T , MITOMO H . User benefits and operator costs of mobile number portability in Japan and impact on market competitiveness [J ] . Telecommunications Policy , 2013 , 37 ( 4-5 ): 345 - 356 .
SHIN D H . A study of mobile number portability effects in the united states [J ] . Telemat Inform , 2007 , 24 ( 1 ): 1 - 14 .
BUሷHLER S , DEWENTER R , HAUCAP J . Mobile number portability in Europe [J ] . Telecommunications Policy , 2006 , 30 ( 7 ): 385 - 399 .
FCC . Wireless local number portability (WLNP) [EB ] . 2016 .
China Mobile . Announcements [EB ] . 2020 .
China Telecom . Investor calendar [EB ] . 2020 .
China Unicom . Presentations & Webcasts [EB ] . 2020 .
SINA . Operators will cancel the unlimited packages.Telecom will no longer reach the speed limit from next month [EB ] . 2019 .
BERSON A , SMITH S , THEARLING K . Building data mining applications for CRM [J ] . 1999 .
GARC´IA-MARI˜NOSO B , SUÁREZ D . Switching mobile operators:evidence about consumers behavior from a longitudinal survey [J ] . Telecommunications Policy , 2019 , 43 ( 5 ): 426 - 433 .
GERPOTT T J , RAMS W , SCHINDLER A . Customer retention,loyalty,and satisfaction in the German mobile cellular telecommunications market [J ] . Telecommunications Policy , 2001 , 25 ( 4 ): 249 - 269 .
LIANG D , MA Z , QI L . Service quality and customer switching behavior in China’s mobile phone service sector [J ] . Journal of Business Research , 2013 , 66 ( 8 ): 1161 - 1167 .
BACKIEL A , BAESENS B , CLAESKENS G . Predicting time-to-churn of prepaid mobile telephone customers using social network analysis [J ] . Technological Forecasting and Social Change , 2016 , 67 ( 9 ): 1135 - 1145 .
NITZAN I , LIBAI B . Social effects on customer retention [J ] . Journal of Marketing , 2011 , 75 ( 6 ): 24 - 38 .
YESHWANTH V , RAJ V V , SARAVANAN M . Evolutionary churn prediction in mobile networks using hybrid learning [C ] // Proceedings of Twenty-Fourth International FLAIRS Conference . Palo Alto:AAAI Press , 2011 .
ZHANG R , ZHU Q . A game-theoretic defense against data poisoning attacks in distributed support vector machines [C ] // Proceedings of 2017 IEEE 56th Annual Conference on Decision and Control (CDC) . Piscataway:IEEE Press , 2017 : 4582 - 4587 .
SLADE M E . Vancouver’s gasoline-price wars:an empirical exercise in uncovering supergame strategies [J ] . Rev.Econmic Studies , 1992 , 59 ( 2 ): 257 - 276 .
FERRERO R , SHAHIDEHPOUR S , RAMESH V . Transaction analysis in deregulated power systems using game theory [J ] . IEEE Transactions on Power Systems , 1997 , 12 ( 3 ): 1340 - 1347 .
MAGALONI B . The game of electoral fraud and the ousting of authoritarian rule [J ] . American Journal Politcal Science , 2010 , 54 ( 3 ): 751 - 765 .
ADEBIYI S O , OYATOYE E O , MOJEKWU J N . Predicting customer churn and retention rates in Nigeria’s mobile telecommunication industry using Markov chain modeling [J ] . Acta Universitatis Sapientiae,Economics and Business , 2015 , 3 ( 1 ): 67 - 80 .
CHEN T , GUESTRIN C . XGBoost:a scalable tree boosting system [C ] // Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2016 : 785 - 794 .
DORFFNER G , . Neural networks for time series processing [C ] // Proceedings of Neural Network World.[S.l.:s.n] . 1996 .
CZAJKOWSKI M , SOBOLEWSKI M . How much do switching costs and local network effects contribute to consumer lock-in in mobile telephony? [J ] . Telecommunications Policy , 2016 , 40 ( 9 ): 855 - 869 .
0
浏览量
658
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构