浏览全部资源
扫码关注微信
[ "桂飞(1994- ),男,清华大学博士生,主要研究方向为智能网络" ]
[ "程阳(1992- ),男,清华大学博士生,主要研究方向为高性能网络系统的设计与优化、分布式机器学习系统" ]
[ "李丹(1981- ),男,博士,清华大学教授、博士生导师,主要研究方向为数据中心网络、网络智能和可信任互联网。入选教育部“青年长江学者”奖励计划,获得国家优秀青年基金项目资助,国家“973”项目首席科学家,国家重点研发计划项目负责人。IEEE Transactions on Computers、IEEE Transactions on Wireless Communications等国际学术期刊编委,ACM SIGCOMM、IEEE INFOCOM等国际学术会议程序委员会委员" ]
[ "洪思虹(1997- ),女,清华大学硕士生,主要研究方向为网络智能传输算法以及网络智能路由算法" ]
网络出版日期:2020-10,
纸质出版日期:2020-10-20
移动端阅览
桂飞, 程阳, 李丹, 等. 互联网智能路由架构及算法[J]. 电信科学, 2020,36(10):12-20.
Fei GUI, Yang CHENG, Dan LI, et al. Internet intelligent routing architecture and algorithm[J]. Telecommunications science, 2020, 36(10): 12-20.
桂飞, 程阳, 李丹, 等. 互联网智能路由架构及算法[J]. 电信科学, 2020,36(10):12-20. DOI: 10.11959/j.issn.1000-0801.2020285.
Fei GUI, Yang CHENG, Dan LI, et al. Internet intelligent routing architecture and algorithm[J]. Telecommunications science, 2020, 36(10): 12-20. DOI: 10.11959/j.issn.1000-0801.2020285.
突发流量在网络中非常普遍,会严重损害用户体验。突发流量往往能在短时间(如毫秒级别)内充满链路,导致网络拥塞和频繁分组丢失,端到端时延增加。传统路由算法要么是流量无关(如 OSPF(open shortest path first,开放式最短路径优先))的,无法对实时流量的变化做出调整;要么是集中式控制的(如线性规划),面临求解时延过大而无法有效应对突发流量的问题。提出了一种新的智能路由算法解决突发流量的问题。一方面,提出的算法能利用机器学习强大的建模能力,通过对网络历史数据的挖掘来学习“隐式”的路由决策依据。另一方面,提出的算法能借助机器学习的快速推理能力降低决策时延,提高系统对突发流量的响应速度。实验结果表明,在真实流量数据集下,相比较其他路由算法,提出的智能路由算法能降低13%~70%的瓶颈链路利用率。
Traffic bursts are common in networks
which have a significant impact on quality of user experience. In the case of traffic bursts
huge volumes of packets can overwhelm the physical links in a short time duration(i.e.
milliseconds)
resulting in congestion and frequent packet loss. However
traditional routing schemes are either traffic oblivious such as OSPF
which can’t adapt to real-time traffic changes
or centralized control such as linear programming
which can’t efficiently react to traffic bursts due to slow computation. To address this problem in a practical and efficient approach
a novel intelligent routing algorithm based on machine learning (ML) was proposed. On the one hand
the proposed algorithm can leverage the promising modelling ability of machine learning to learn the implicit clue of routing decision. On the other hand
the proposed algorithm enjoys the ultralow processing latency benefited from the fast inference of ML
thus speeding up the reaction to traffic bursts. Experiments on two open-source datasets demonstrate that the proposed scheme can reduce utilization of bottleneck link by 13%~70%
compared with the baselines.
BOGLE J , BHATIA N , GHOBADI M , et al . TEAVAR:striking the right utilization-availability balance in WAN traffic engineering [C ] // Proceedings of the ACM Special Interest Group on Data Communication . New York:ACM Press , 2019 : 29 - 43 .
HONG C Y , KANDULA S , MAHAJAN R , et al . Achieving high utilization with software-driven wan [C ] // Proceedings of 2013 ACM SIGCOMM Computer Communication Review . New York:ACM Press , 2013 .
KUMAR P , YUAN Y , YU C , et al . Semi-oblivious traffic engineering:the road not taken [C ] // Proceedings of 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18).[S.l.:s.n] . 2018 .
IETF . Analysis of an equal-cost multi-path algorithm:RFC 2992 [S ] . 2000 .
FORTZ B , THORUP M . Internet traffic engineering by optimizing OSPF weights [C ] // Proceedings of IEEE INFOCOM’ 2000 . Piscataway:IEEE Press , 2000 .
APPLEGATE D , COHEN E . Making routing robust to changing traffic demands:algorithms and evaluation [J ] . IEEE/ACM Transactions on Networking (TON) , 2006 , 14 ( 6 ): 1193 - 1206 .
HAO W , XIE H Y , QIU L L , et al . COPE:traffic engineering in dynamic networks [C ] // Proceedings of 2006 Conference on Applications,Technologies,Architectures,and Protocols for Computer Communications.[S.l.:s.n] . 2006 .
ZHANG Y C , TIAN Y , WANG W D , et al . Federated routing scheme for largescale domain network [C ] // Proceedings of IEEE International Conference on Computer Communications poster (Infocom’2020) . Piscataway:IEEE Press , 2020 .
FONTUGNE R , ABRY P , FUKUDA K , et al . Scaling in internet traffic:a 14 year and 3 day longitudinal study [J ] . ACM Transaction on Networking , 2017
XenaNetworks.Microburst [R ] . 2019 .
JIANG H , DOVROLIS C . Why is the internet traffic bursty in short time scales? [C ] // Proceedings of Sigmetric . New York:ACM Press , 2005 .
KAPOOR R , SNOEREN A C , VOELKER G M , et al . Bullettrains:a study of NIC burst behavior at microsecond timescales [C ] // Proceedings of 9 th ACM Conference on Emerging Networking Experiments & Technologies . New York:ACM Press , 2013 .
HUANG Q , LEE P C , BAO Y G . SketchLearn:relieving user burdens in approximate measurement with automated statistical inference [C ] // Proceedings of ACM SIGCOMM 2018 . New York:ACM Press , 2018 .
HUANG Q , SUN H F , LEE P C , et al . OmniMon:re-architecting network telemetry with resource efficiency and full accuracy [C ] // Proceedings of ACM SIGCOMM 2020 . New York:ACM Press , 2020 .
CHEN X , HUANG Q , ZHANG D , et al . ApproSync:approximate state synchronization for programmable networks [C ] // Proceedings of IEEE ICNP 2020 . Piscataway:IEEE Press , 2020 .
CHEN X , LIU H Y , HUANG Q , et al . SPEED:scalable and high-performance deployment for data plane programs [C ] // Proceedings of IEEE ICNP 2020 . Piscataway:IEEE Press , 2020 .
SRIKANTH K , PADHYE J , BAHL V . Flyways to De-Congest data center networks [C ] // Proceedings of Hotnet 2009.[S.l.:s.n] . 2009 .
LIU X , SRIDHARAN A , MACHIRAJU S , et al . Experiences in a 3G network:interplay between the wireless channel and applications [C ] // Proceedings of ACM International Conference on Mobile Computing & Networking . New York:ACM Press , 2008 .
BENSON T , ANAND A , AKELLA A , et al . MicroTE:fine grained traffic engineering for data centers [C ] // Proceedings the Seventh Conference on emerging Networking Experiments and Technologies 2011.[S.l.:s.n] . 2011 .
VALADARSKY A , SCHAPIRA M , SHAHAF D , et al . Learning to route [C ] // Proceedings of the 16th ACM Workshop on Hot Topics in Networks . New York:ACM Press , 2017 .
BOYAN J A , LITTMAN M L . Packet routing in dynamically changing networks:A reinforcement learning approach [C ] // Proceedings of the 6th International Conference on Neural Information Processing Systems 1993 . New York:ACM Press , 1994 .
PINYOANUNTAPONG P , LEE M , WANG P . Delay-optimal traffic engineering through multi-agent reinforcement learning [C ] // Proceedings of IEEE INFOCOM 2019 Workshop on Network Intelligence(NI 2019)Machine Learning for Networking . Piscataway:IEEE Press , 2019 .
XU Z Y , TANG J , MENG J S , et al . Experience-driven networking:a deep reinforcement learning based approach [C ] // Proceedings of IEEE Conference on Computer Communications (IEEE INFOCOM 2018) . Piscataway:IEEE Press , 2018 .
蔡鑫 , 娄京生 . 基于LSTM深度学习模型的中国电信官方微博用户情绪分析 [J ] . 电信科学 , 2017 , 33 ( 12 ): 136 - 141 .
CAI X , LOU J S . Sentiment analysis of telecom official micro-blog users based on LSTM deep learning model [J ] . Telecommunications Science , 2017 , 33 ( 12 ): 136 - 141 .
GIBNEYE . Google AI algorithm masters ancient game of Go [J ] . Nature News , 2016 , 529 ( 7587 ):445.
LOWE R , WU Y , TAMAR A , et al . Multi-agent actor-critic for mixed cooperative-competitive environments [C ] // Proceedings of Advances in Neural Information Processing Systems.[S.l.:s.n] . 2017 .
FOERSTER J , FARQUHAR G , AFOURAS T , et al . Counterfactual multi-agent policy gradients [C ] // Proceedings of AAAI 2018.[S.l.:s.n] . 2018 .
ZHANG Y . 6 months of abilene traffic matrices [Z ] .2004. 2004 .
UHLIG S , QUOITIN B , LEPROPRE J , et al . Providing publicintradomain traffic matrices to the research community [C ] // Proceedings of ACM SIGCOMM Computer Communication Review . New York:ACM Press , 2006 .
0
浏览量
973
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构