浏览全部资源
扫码关注微信
[ "张捷(1996- ),女,南京邮电大学硕士生,主要研究方向为宽带移动通信。" ]
[ "杨丽花(1984- ),女,南京邮电大学副教授,主要研究方向为移动无线通信、通信信号处理、多载波通信系统等。" ]
[ "王增浩(1994- ),男,南京邮电大学硕士生,主要研究方向为移动通信。" ]
[ "呼博(1996- ),男,南京邮电大学硕士生,主要研究方向为宽带移动通信。" ]
[ "聂倩(1997- ),女,南京邮电大学硕士生,主要研究方向为移动通信。" ]
网络出版日期:2021-01,
纸质出版日期:2021-01-20
移动端阅览
张捷, 杨丽花, 王增浩, 等. 一种新型的基于深度学习的时变信道预测方法[J]. 电信科学, 2021,37(1):39-47.
Jie ZHANG, Lihua YANG, Zenghao WANG, et al. A novel deep learning based time-varying channel prediction method[J]. Telecommunications science, 2021, 37(1): 39-47.
张捷, 杨丽花, 王增浩, 等. 一种新型的基于深度学习的时变信道预测方法[J]. 电信科学, 2021,37(1):39-47. DOI: 10.11959/j.issn.1000-0801.2021011.
Jie ZHANG, Lihua YANG, Zenghao WANG, et al. A novel deep learning based time-varying channel prediction method[J]. Telecommunications science, 2021, 37(1): 39-47. DOI: 10.11959/j.issn.1000-0801.2021011.
针对高速移动正交频分复用系统,提出了一种新型的基于深度学习的时变信道预测方法。为了避免网络参数随机初始化造成的影响,本文方法首先基于数据与导频信息获取较理想的信道估计,利用其对 BP神经网络进行预训练处理,以获取理想的网络初始参数;然后,基于预训练获取网络初始值,利用基于导频获取的信道估计对BP神经网络进行再次训练,以获取最终的信道预测网络模型;最后,本文方法基于该预测网络模型通过线上预测实现了时变信道的单时刻与多时刻预测。仿真结果表明,本文方法可以显著地提高时变信道预测精度,且具有较低的计算复杂度。
For high-speed mobile orthogonal frequency division multiplexing (OFDM) systems
a novel time-varying channel prediction method based on deep learning was proposed.To avoid the influence caused by random initialization of network parameters
the proposed method firstly obtains an ideal channel estimation based on data and pilot
and then pre-trains the back propagation (BP) neural network based on the channel estimation to obtain the ideal network initial parameters.Then
based on the initial network value obtained by pre-training
the proposed method uses the channel estimation based on pilot to train the BP neural network again.Finally
the proposed method realizes the single-time-and multi-time prediction of time-varying channels through on-line prediction.Simulation results show that the proposed method can significantly improve the prediction accuracy of time-varying channels and has a low computational complexity.
GE X H , QIU Y H , CHEN J Q , et al . Wireless fractal cellular networks [J ] . IEEE Wireless Communications , 2016 , 23 ( 5 ): 110 - 119 .
CHEN J Q , GE X H , NI Q , et al . Coverage and handoff analysis of 5G fractal small cell networks [J ] . IEEE Transactions on Wireless Communications , 2019 , 18 ( 2 ): 1263 - 1276 .
HU Y , LI H , CHANG Z , et al . Scheduling strategy for multimedia heterogeneous high-speed train networks [J ] . IEEE Transactions on Vehicular Technology , 2017 , 66 ( 4 ): 3265 - 3279 .
SUN N , ZHAO Y , SUN L , et al . Distributed and dynamic resource management for wireless service delivery to high-speed trains [J ] . IEEE Access , 2017 ( 5 ): 620 - 632 .
TANG Q , LONG H , YANG H J , et al . An enhanced LMMSE channel estimation under high speed railway scenarios [C ] // Proceedings of 2017 IEEE International Conference on Communications Workshops . Piscataway:IEEE Press , 2017 : 999 - 1004 .
SHARMA P , CHANDRA K . Prediction of state transitions in rayleigh fading channels [J ] . IEEE Transactions on Vehicular Technology , 2007 , 56 ( 2 ): 416 - 425 .
HALLEN A D , HALLEN H , YANG T S . Long range prediction and reduced feedback for mobile radio adaptive OFDM systems [J ] . IEEE Transactions on Wireless Communications , 2006 , 5 ( 10 ): 2723 - 2732 .
WEI P , LI W G , WANG W , et al . Downlink channel prediction for time-varying FDD massive MIMO systems [J ] . IEEE Journal of Selected Topics in Signal Processing , 2019 , 13 ( 5 ): 1090 - 1102 .
WEI P , MENG Z , and TAO J . Channel prediction in time- varying massive MIMO environments [J ] . IEEE Access , 2017 ( 5 ): 23938 - 23946 .
DONG Z , ZHAO Y , CHEN Z . Support vector machine for channel prediction in high-speed railway communication systems [C ] // Proceedings of 2018 IEEE MTT-S International Wireless Symposium (IWS) . Piscataway:IEEE Press , 2018 : 1 - 3 .
DING T , HIROSE A . Fading channel prediction based on combination of complex-valued neural networks and chirp Z-transform [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2014 , 25 ( 9 ): 1686 - 1695 .
ZHAO Y , GAO H , BEAULIEU N C , CHEN Z , et al . Echo state network for fast channel prediction in rice of fading scenarios [J ] . IEEE Communications Letters , 2017 , 21 ( 3 ): 672 - 675 .
LIAO R F , WEN H , WU J S , et al . The rayleigh fading channel prediction via deep learning [J ] . Wireless Communications and Mobile Computing , 2018 , 11 .
ABRISHAMKAR F , IRVINE J . Comparison of current solutions for the provision of voice services to passengers on high speed trains [C ] // Proceedings of IEEE Vehicular Technology Conference . Piscataway:IEEE Press , 2000 : 2068 - 2075 .
GOLLER M , . Application of GSM in high speed trains:measurements and simulations [C ] // Proceedings of IEEE Colloquium on Radio Communications in Transportation . Piscataway:IEEE Press , 1995 : 1 - 7 .
3GPP . Initial ideal simulation results for different high speed propagation scenarios:TSG-RAN4-37 (R4-051274) [S ] . 2005 .
院琳 , 杨雪松 , 王秉中 . 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测 [J ] . 物理学报 , 2019 , 68 ( 17 ): 72 - 79 .
YUAN L , YANG X S , WANG B Z . The neural network model optimized by empirical knowledge genetic algorithm realizes time inversion channel prediction [J ] . Acta Physica Sinica , 2019 , 68 ( 17 ): 72 - 79 .
JIANG W , SCHOTTEN H D . Neural network-based channel prediction and its performance in multi-antenna systems [C ] // Proceedings of 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall) . Piscataway:IEEE Press , 2018 : 1 - 6 .
吕长伟 . OFDM系统时域信道预测算法研究 [D ] . 北京:北京理工大学 , 2015 .
LV C W . Research on time-domain channel prediction algorithm for OFDM system [D ] . Beijing:Beijing Institute of Technology , 2015 .
0
浏览量
418
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构