浏览全部资源
扫码关注微信
1. 清华大学,北京 100084
2. 清华大学深圳国际研究生院,广东 深圳 518055
[ "顾玥(1997- ),女,清华大学博士生,主要研究方向为智能网络。" ]
[ "李丹(1981- ),男,清华大学计算机系教授、博士生导师,主要研究方向为数据中心网络、网络智能和可信任互联网。" ]
[ "高凯辉(1996- ),男,清华大学深圳国际研究生院博士生,主要研究方向为性能可预测的数据中心网络和网络智能。" ]
网络出版日期:2021-03,
纸质出版日期:2021-03-20
移动端阅览
顾玥, 李丹, 高凯辉. 基于机器学习和深度学习的网络流量分类研究[J]. 电信科学, 2021,37(3):105-113.
Yue GU, Dan LI, Kaihui GAO. Research on network traffic classification based on machine learning and deep learning[J]. Telecommunications science, 2021, 37(3): 105-113.
顾玥, 李丹, 高凯辉. 基于机器学习和深度学习的网络流量分类研究[J]. 电信科学, 2021,37(3):105-113. DOI: 10.11959/j.issn.1000-0801.2021052.
Yue GU, Dan LI, Kaihui GAO. Research on network traffic classification based on machine learning and deep learning[J]. Telecommunications science, 2021, 37(3): 105-113. DOI: 10.11959/j.issn.1000-0801.2021052.
随着互联网技术的不断发展以及网络规模的不断扩大,应用的类别纷繁复杂,新型应用层出不穷。为了保障用户服务质量(QoS)并确保网络安全,准确快速的流量分类是运营商及网络管理者亟须解决的问题。首先给出网络流量分类的问题定义和性能指标;然后分别介绍基于机器学习和基于深度学习的流量分类方法,分析了这些方法的优缺点,并对现存问题进行阐述;接着围绕流量分类线上部署时会遇到的 3 个问题:数据集问题、新应用识别问题、部署开销问题对相关工作进行阐述与分析,并进一步探讨目前网络流量分类研究面临的挑战;最后对网络流量分类下一步的研究方向进行展望。
With the continuous development of Internet technology and the continuous expansion of network scale
there are many different types of applications
and various new applications have endlessly emerged.In order to ensure the quality of service (QoS) and ensure network security
accurate and fast traffic classification is an urgent problem for both operators and network managers.Firstly
the problem definition and performance metrics of network traffic classification were given.Then
the traffic classification methods based on machine learning and deep learning were introduced respectively
the advantages and disadvantages of these methods were analyzed
and the existing problems were expounded.Next
the related work by focusing on the three problems encountered elaborated and analyzed in traffic classification when considering online deployment: dataset
zero-day application identification and the cost of online deployment
and further discusses the challenges faced by the current network traffic classification researches.Finally
the next research direction of network traffic classification was prospected.
LOTFOLLAHI M , SIAVOSHANI M J , ZADE R S H , et al . Deep packet:a novel approach for encrypted traffic classification using deep learning [J ] . Soft Computing , 2020 , 24 ( 3 ): 1999 - 2012 .
WANG W , ZHU M , ZENG X W , et al . Malware traffic classification using convolutional neural network for representation learning [C ] // Proceedings of 2017 International Conference on Information Networking (ICOIN) . Piscataway:IEEE Press , 2017 : 712 - 717 .
WANG W , ZHU M , WANG J L , et al . End-to-end encrypted traffic classification with one-dimensional convolution neural networks [C ] // Proceedings of 2017 IEEE International Conference on Intelligence and Security Informatics (ISI) . Piscataway:IEEE Press , 2017 : 43 - 48 .
ZHENG W , GOU C , YAN L , et al . Learning to classify:aflow-based relation network for encrypted traffic classification [C ] // Proceedings of the Web Conference 2020 .[S.l.:s.n. ] , 2020 : 13 - 22 .
WANG S H , SUN C , MENG Z L , et al . Martini:bridging the gap between network measurement and control using switching ASICs [C ] // Proceedings of 2020 IEEE 28th International Conference on Network Protocols (ICNP) . Piscataway:IEEE Press , 2020 : 1 - 12 .
ZHANG J , CHEN X , XIANG Y , et al . Robust network traffic classification [J ] . IEEE/ACM Transactions on Networking , 2015 , 23 ( 4 ): 1257 - 1270 .
AULD T , MOORE A W , GULL S F . Bayesian neural networks for internet traffic classification [J ] . IEEE Transactions on Neural Networks , 2007 , 18 ( 1 ): 223 - 239 .
MOORE A W , ZUEV D . Internet traffic classification using bayesian analysis techniques [C ] // Proceedings of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems . Piscataway:IEEE Press , 2005 : 50 - 60 .
DRAPER-GIL G , LASHKARI A H , MAMUN M S I , et al . Characterization of encrypted and vpn traffic using time-related features [C ] // Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP) . Piscataway:IEEE Press , 2016 : 407 - 414 .
YAMANSAVASCILAR B , GUVENSAN M A , YAVUZ A G , et al . Application identification via network traffic classification [C ] // Proceedings of 2017 International Conference on Computing,Networking and Communications (ICNC) . Piscataway:IEEE Press , 2017 : 843 - 848 .
MOORE A , ZUEV D , CROGAN M . Discriminators for use in flow-based classification [R ] . 2013 .
TAYLOR V F , SPOLAOR R , CONTI M , et al . Appscanner:automatic fingerprinting of smartphone apps from encrypted network traffic [C ] // Proceedings of 2016 IEEE European Symposium on Security and Privacy (EuroS&P) . Piscataway:IEEE Press , 2016 : 439 - 454 .
SHEN M , ZHANG J , ZHU L , et al . Encrypted traffic classification of decentralized applications on ethereum using feature fusion [C ] // Proceedings of 2019 IEEE/ACM 27th International Symposium on Quality of Service (IWQoS) . Piscataway:IEEE Press , 2019 : 1 - 10 .
LI R , XIAO X , NI S , et al . Byte segment neural network for network traffic classification [C ] // Proceedings of 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS) . Piscataway:IEEE Press , 2018 : 1 - 10 .
XIE G R , LI Q , JIANG Y , et al . SAM:self-attention based deep learning method for online traffic classification [C ] // Proceedings of the Workshop on Network Meets AI & ML . Piscataway:IEEE Press , 2020 : 14 - 20 .
LIU C , HE L T , XION G , et al . Fs-net:a flow sequence network for encrypted traffic classification [C ] // Proceedings of IEEE INFOCOM 2019-IEEE Conference on Computer Communications . Piscataway:IEEE Press , 2019 : 1171 - 1179 .
LOPEZ-MARTIN M , CARRO B , SANCHEZ-ESGUEVILLAS A , et al . Network traffic classifier with convolutional and recurrent neural networks for Internet of Things [J ] . IEEE Access , 2017 ( 5 ): 18042 - 18050 .
SHAPIRA T , SHAVITT Y . Flowpic:encrypted internet traffic classification is as easy as image recognition [C ] // Proceedings of IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) . Piscataway:IEEE Press , 2019 : 680 - 687 .
LIU Z X , BEN-BASAT R , EINZIGER G , et al . Nitrosketch:robust and general sketch-based monitoring in software switches [C ] // Proceedings of the ACM Special Interest Group on Data Communication . Piscataway:IEEE Press , 2019 : 334 - 350 .
RASHELBACH A , ROTTENSTREICH O , SILBERSTEIN M . A computational approach to packet classification [C ] // Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications,Technologies,Architectures,and Protocols for Computer Communication .[S.l.:s.n. ] , 2020 : 542 - 556 .
VU L , BUIC T , NGUYEN QUANG U . A deep learning based method for handling imbalanced problem in network traffic classification [C ] // Proceedings of the Eighth International Symposium on Information and Communication Technology . Piscataway:IEEE Press , 2017 : 333 - 339 .
KINGMA D P , DHARIWAL P . Glow:generative flow with invertible 1×1 convolutions [J ] . rXiv:1807.03039 , 2018
GARCIA J , KORHONEN T . Efficient distribution-derived features for high-speed encrypted flow classification [C ] // Proceedings of the 2018 Workshop on Network Meets AI & ML .[S.l.:s.n. ] , 2018 : 21 - 27 .
GARCIA J , KORHONEN T . On runtime and classification performance of the discretize-optimize (DISCO) classification approach [J ] . ACM SIGMETRICS Performance Evaluation Review , 2018 , 46 ( 3 ): 167 - 170 .
GARCIA J , KORHONEN T , ANDERSSON R , et al . Towards video flow classification at a million encrypted flows per second [C ] // Proceedings of 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA) . Piscataway:IEEE Press , 2018 : 358 - 365 .
ZHANG J L , LI F H , YE F , et al . Autonomous unknown-application filtering and labeling for DL-based traffic classifier update [C ] // Proceedings of IEEE INFOCOM 2020-IEEE Conference on Computer Communications . Piscataway:IEEE Press , 2020 : 397 - 405 .
EDE T V , BORTOLAMEOTTI R , CONTINELLA A , et al . Flowprint:semi-supervised mobile-app fingerprinting on encrypted network traffic [C ] // Proceedings of Network and Distributed System Security Symposium .[S.l.:s.n. ] , 2020 .
0
浏览量
1096
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构