浏览全部资源
扫码关注微信
1. 东南大学移动通信国家重点实验室,江苏 南京 210096
2. 新加坡科技设计大学,新加坡 487372
[ "李楠楠(1997− ),女,东南大学移动通信国家重点实验室硕士生,主要研究方向为物理层密钥生成等" ]
[ "韩瑜(1991− ),女,博士,现就职于新加坡科技设计大学,主要研究方向为大规模MIMO技术、智能反射面等" ]
[ "高宁(1989− ),男,博士,东南大学移动通信国家重点实验室助理研究员,主要研究方向为物理层通信安全、无人机集群通信等" ]
[ "金石(1974− ),男,博士,东南大学移动通信国家重点实验室教授、博士生导师,主要研究方向为5G/6G理论与关键技术、物联网理论与关键技术以及机器学习与大数据处理在移动通信中的应用等" ]
网络出版日期:2021-05,
纸质出版日期:2021-05-20
移动端阅览
李楠楠, 韩瑜, 高宁, 等. 基于幅度和相位联合分区的无线物理层密钥生成方法[J]. 电信科学, 2021,37(5):100-112.
Nannan LI, Yu HAN, Ning GAO, et al. Joint amplitude and phase partition based physical layer key generation method[J]. Telecommunications science, 2021, 37(5): 100-112.
李楠楠, 韩瑜, 高宁, 等. 基于幅度和相位联合分区的无线物理层密钥生成方法[J]. 电信科学, 2021,37(5):100-112. DOI: 10.11959/j.issn.1000-0801.2021106.
Nannan LI, Yu HAN, Ning GAO, et al. Joint amplitude and phase partition based physical layer key generation method[J]. Telecommunications science, 2021, 37(5): 100-112. DOI: 10.11959/j.issn.1000-0801.2021106.
研究基于无线信道物理层特征的密钥生成方法对于提高无线传输的安全性具有重要意义。考虑多径衰落信道下时分双工(time division duplex,TDD)正交频分复用(orthogonal frequency division multiplexing, OFDM)通信系统,利用 OFDM 多载波优势以及信道互易性,联合使用信道频率响应(channel frequency response,CFR)特征的相位与幅度信息,提出了两种应用于无线物理层密钥生成的算法。理论分析和实验仿真表明,提出的算法生成的初始密钥具有更高的一致性和更小的信息协商开销;可以有效增加密钥长度和增强密钥随机性;此外,对于非法用户的窃听以及主动攻击具有较好的防御能力。
A key generation method based on wireless channel physical layer features is of great significance for improving security of wireless transmission.An orthogonal frequency division multiplexing (OFDM) communication system based on time division duplex (TDD) with multipath fading channels was considered.Utilizing the advantages of OFDM multicarrier and the channel reciprocity and combining the phase and amplitude information of channel frequency response (CFR)
two algorithms for physical layer key generation were proposed.Theoretical analysis and experimental simulation show that the proposed algorithm has more consistent and smaller overhead in information negotiation
in addition
the proposed algorithm can increase the key length and enhance randomness
and has a better defense capability against eavesdropping and active attacks of the illegal user.
WU B , CHEN J , CARDEI M , et al . A survey of attacks and countermeasures in mobile Ad Hoc networks [J ] . Springer , 2007 : 103 - 105 .
ZOU Y , JIA Z , WANG X , et al . A survey on wireless security:technical challenges,recent advances,and future trends [J ] . Proceedings of the IEEE , 2016 , 104 ( 9 ): 1727 - 1765 .
ZHANG J , DUONG T , MARSHALL A , et al . Key generation from wireless channels:a review [J ] . IEEE Access , 2017 , 4 ( 3 ): 614 - 626 .
闫富朝 , 刘怡良 , 韩帅 , 等 . 空天地通信网络中物理层安全技术综述 [J ] . 电信科学 , 2020 , 36 ( 9 ): 1 - 13 .
YAN F C , LIU Y L , HAN S , et al . A survey of physical layer security in space-air-ground communication and networks [J ] . Telecommunications Science , 2020 , 36 ( 9 ): 1 - 13 .
MATHUR S , TRAPPE W , MANDAYAM N , et al . Radio-telepathy:extracting a secret key from an unauthenticated wireless channel [C ] // Proceedings of the ACM International Conference on Mobile Computing and Networking . New York:ACM Press , 2008 : 128 - 139 .
PENG Y , WANG P , XIANG W , et al . Secret key generation based on estimated channel state information for TDD-OFDM systems over fading channels [J ] . IEEE Transactions on Wireless Communications , 2017 , 16 ( 8 ): 5176 - 5186 .
UPADHYAY G , NENE M J . One time pad generation using quantum superposition states [C ] // Proceedings of IEEE International Conference on Recent Trends in Electronics Information& Communication Technology (RTEICT) . Piscataway: IEEE Press , 2017 : 1882 - 1886 .
SUDARSONO A , YULIANA M , KRISTALINA P . A reciprocity approach for shared secret key generation extracted from received signal strength in the wireless networks [C ] // Proceedings of International Electronics Symposium on Engineering Technology and Applications . Piscataway: IEEE Press , 2018 : 170 - 175 .
LI H , SHEN C , ZHAO Y , et al . High entropy secrecy generation from wireless CIR [J ] . Journal of Communications and Networks , 2019 , 21 ( 2 ): 177 - 191 .
LI G , HU A , ZHANG J , et al . High-agreement uncorrelated secret key generation based on principal component analysis preprocessing [J ] . IEEE Transactions on Communications , 2018 , 66 ( 7 ): 3022 - 3034 .
BRASSARD G , SALVAIL L . Secret-key reconciliation by public discussion [C ] // Proceedings of the 1993 Workshop on the Theory and Application of Cryptographic Techniques on Advances in Cryptology . Heidelberg: Springer , 1994 : 410 - 423 .
ZHAO F , FU M , WANG F , et al . Error reconciliation for practical quantum cryptography [J ] . Optik-International Journal for Light and Electron Optics , 2007 , 118 ( 10 ): 502 - 506 .
ZHANG S , JIN L , ZHU S , et al . Information reconciliation based on systematic secure polar code for secret key generation [C ] // Proceedings of IEEE 88th Vehicular Technology Conference(VTC-Fall) . Piscataway:IEEE Press , 2018 : 1 - 6 .
EPIPHANIOU G , KARADIMAS P , ISMAIL D K B , et al . Non-reciprocity compensation combined with Turbo codes for secret key generation in vehicular Ad Hoc social IoT networks [J ] . IEEE Internet of Things Journal , 2018 , 5 ( 4 ): 2496 - 2505 .
SIMEONE O , BAR-NESS Y , SPAGNOLINI U . Pilot-based channel estimation for OFDM systems by tracking the delay-subspace [J ] . IEEE Transactions on Wireless Communications , 2004 , 3 ( 1 ): 315 - 325 .
SHIN C , HEATH R W , POWERS E J . Blind channel estimation for MIMO-OFDM systems [C ] // Proceedings of the IEEE Global Telecommunications Conference . Piscataway:IEEE Press , 2007 : 670 - 685 .
Guidelines for evaluation of radio transmission technologies for IMT-2000 [J ] . Rec.ITU-R M.1225 , 1997 .
LI G , SUN C , ZHANG J , et al . Physical layer key generation in 5G and beyond wireless communications:challenges and opportunities [J ] . Entropy , 2019 , 21 ( 5 ): 1 - 16 .
0
浏览量
265
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构