浏览全部资源
扫码关注微信
1. 华侨大学信息科学与工程学院,福建 厦门 361021
2. 史蒂文斯理工学院电子与计算机工程系,美国 新泽西州 霍博肯 07030
3. 吉首大学信息科学与工程学院,湖南 吉首 416000
[ "孙姝君(1997− ),女,华侨大学信息科学与工程学院硕士生,主要研究方向为无线通信、人工智能" ]
[ "彭盛亮(1982− ),男,博士,华侨大学信息科学与工程学院副教授、硕士生导师,主要研究方向为认知无线电、人工智能、物联网等" ]
[ "姚育东(1960− ),男,博士,史蒂文斯理工学院电子与计算机工程系终身教授。2011年当选国际电气电子工程师协会会士(IEEE Fellow),2015年当选美国国家发明家科学院院士(Fellow of National Academy of Inventors),2017年当选加拿大工程院院士(Fellow of Canadian Academy of Engineering)。主要研究方向为通信信息技术、人工智能、健康物联网" ]
[ "杨喜(1978− ),男,博士,吉首大学信息科学与工程学院 教授、硕士生导师,主要研究方向为认知无线电、统计信号处理、智能信息与信号处理" ]
网络出版日期:2021-05,
纸质出版日期:2021-05-20
移动端阅览
孙姝君, 彭盛亮, 姚育东, 等. 基于深度学习的调制识别综述[J]. 电信科学, 2021,37(5):82-90.
Shujun SUN, Shengliang PENG, Yudong YAO, et al. A survey of deep learning based modulation recognition[J]. Telecommunications science, 2021, 37(5): 82-90.
孙姝君, 彭盛亮, 姚育东, 等. 基于深度学习的调制识别综述[J]. 电信科学, 2021,37(5):82-90. DOI: 10.11959/j.issn.1000-0801.2021114.
Shujun SUN, Shengliang PENG, Yudong YAO, et al. A survey of deep learning based modulation recognition[J]. Telecommunications science, 2021, 37(5): 82-90. DOI: 10.11959/j.issn.1000-0801.2021114.
调制识别是通信系统的基础任务之一,在认知无线电、智能通信、无线电监管、电子对抗等领域均有着广泛的应用。近年来,基于深度学习的调制识别技术以其在特征提取和识别性能方面的优势,日益成为研究的焦点。系统地梳理了基于深度学习的调制识别技术,首先介绍了相关基础,随后详细阐述了其系统架构、数据预处理方式、深度神经网络结构、常用数据集以及评价指标,最后分析展望了该技术未来的发展方向。
Modulation recognition is one of the fundamental tasks for communications systems
which can be widely applied in various fields
such as cognitive radio
intelligent communications
radio surveillance
electronic warfare
etc.In recent years
deep learning (DL) based modulation recognition has attracted great attention due to its superiority in feature extraction and recognition performance.The techniques of DL based modulation recognition were systematically summarized.Firstly
some knowledge relevant to DL based modulation recognition was introduced.Then
the system architecture
data pre-processing methods
deep neural network structures
prevalent datasets and performance metrics of DL based modulation recognition were illustrated.Finally
the future directions of DL based modulation recognition were also discussed.
DOBRE O A , ABDI A , BAR-NESS Y , et al . Survey of automatic modulation classification techniques: classical approaches and new trends [J ] . IET Communications , 2007 , 1 ( 2 ): 137 .
PENG S L , JIANG H Y , WANG H X , et al . Modulation classification based on signal constellation diagrams and deep learning [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2019 , 30 ( 3 ): 718 - 727 .
PANAGIOTOU P , ANASTASOPOULOS A , POLYDOROS A . Likelihood ratio tests for modulation classification [C ] // Proceedings of MILCOM 2000 Proceedings.21st Century Military Communications,Architectures and Technologies for Information Superiority (Cat.No.00CH37155) . Piscataway: IEEE Press , 2000 : 670 - 674 .
SHI Q H , KARASAWA Y . Automatic modulation identification based on the probability density function of signal phase [J ] . IEEE Transactions on Communications , 2012 , 60 ( 4 ): 1033 - 1044 .
XIE X J , NI Y Q , PENG S L , et al . Deep learning based automatic modulation classification for varying SNR environment [C ] // Proceedings of 2019 28th Wireless and Optical Communications Conference (WOCC) . Piscataway: IEEE Press , 2019 : 1 - 5 .
董鑫 , 欧阳喜 , 袁强 . 多径信道下基于高阶累积量的通信信号调制识别算法 [J ] . 信息工程大学学报 , 2015 , 16 ( 1 ): 73 - 78 .
DONG X , OUYANG X , YUAN Q . Automatic modulation classification using cumulant features for communications via multipath channels [J ] . Journal of Information Engineering University , 2015 , 16 ( 1 ): 73 - 78 .
PAWAR S U , DOHERTY J F . Modulation recognition in continuous phase modulation using approximate entropy [J ] . IEEE Transactions on Information Forensics and Security , 2011 , 6 ( 3 ): 843 - 852 .
XIE L J , WAN Q . Automatic modulation recognition for phase shift keying signals with compressive measurements [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 2 ): 194 - 197 .
CHIKHA W B , DAYOUB I , HAMOUDA W , et al . Modulation recognition for MIMO relaying broadcast channels with direct link [J ] . IEEE Wireless Communications Letters , 2014 , 3 ( 1 ): 50 - 53 .
XIE L J , WAN Q . Automatic modulation recognition for phase shift keying signals with compressive measurements [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 2 ): 194 - 197 .
KHARBECH S , DAYOUB I , ZWINGELSTEIN-COLIN M , et al . On classifiers for blind feature-based automatic modulation classification over multiple-input–multiple-output channels [J ] . IET Communications , 2016 , 10 ( 7 ): 790 - 795 .
ASLAM M W , ZHU Z C , NANDI A K . Automatic modulation classification using combination of genetic programming and KNN [J ] . IEEE Transactions on Wireless Communications , 2012 , 11 ( 8 ): 2742 - 2750 .
GOODFELLOW I J , BENGIO Y , COURVILLE A C . Deep Learning [M ] . Massachusetts : MIT Press , 2016 .
LEE J , KIM B , KIM J , et al . Deep neural network-based blind modulation classification for fading channels [C ] // Proceedings of 2017 International Conference on Information and Communication Technology Convergence (ICTC) . Piscataway: IEEE Press , 2017 : 551 - 554 .
O’SHEA T J , ROY T , CLANCY T C . Over-the-air deep learning based radio signal classification [J ] . IEEE Journal of Selected Topics in Signal Processing , 2018 , 12 ( 1 ): 168 - 179 .
HU S S , PEI Y Y , LIANG P P , et al . Deep neural network for robust modulation classification under uncertain noise conditions [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 1 ): 564 - 577 .
ZHENG S L , QI P H , CHEN S C , et al . Fusion methods for CNN-based automatic modulation classification [J ] . IEEE Access , 2019 ( 7 ): 66496 - 66504 .
RAJENDRAN S , MEERT W , GIUSTINIANO D , et al . Deep learning models for wireless signal classification with distributed low-cost spectrum sensors [J ] . IEEE Transactions on Cognitive Communications and Networking , 2018 , 4 ( 3 ): 433 - 445 .
HONG S , ZHANG Y B , WANG Y , et al . Deep learning-based signal modulation identification in OFDM systems [J ] . IEEE Access , 2019 ( 7 ): 114631 - 114638 .
MOSSAD O S , ELNAINAY M , TORKI M . Deep convolutional neural network with multi-task learning scheme for modulations recognition [C ] // Proceedings of 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC) . Piscataway: IEEE Press , 2019 : 1644 - 1649 .
KHAN F N , ZHONG K P , AL-ARASHI W H , et al . Modulation format identification in coherent receivers using deep machine learning [J ] . IEEE Photonics Technology Letters , 2016 , 28 ( 17 ): 1886 - 1889 .
O’SHEA T J , CORGAN J , CLANCY T C . Convolutional radio modulation recognition networks [C ] // Proceedings of Engineering Applications of Neural Networks .[S.l.:s.n. ] , 2016 .
HUANG S , CHAI L , LI Z N , et al . Automatic modulation classification using compressive convolutional neural network [J ] . IEEE Access , 2019 ( 7 ): 79636 - 79643 .
WANG D S , ZHANG M , LI Z , et al . Modulation format recognition and OSNR estimation using CNN-based deep learning [J ] . IEEE Photonics Technology Letters , 2017 , 29 ( 19 ): 1667 - 1670 .
DAVIDSON K L , GOLDSCHNEIDER J R , CAZZANTI L , et al . Feature-based modulation classification using circular statistics [C ] // Proceedings of IEEE MILCOM 2004 . Piscataway:IEEE Press , 2004 : 765 - 771 .
MENDIS G J , WEI J , MADANAYAKE A . Deep learning-based automated modulation classification for cognitive radio [C ] // Proceedings of2016 IEEE International Conference on Communication Systems (ICCS) . Piscataway: IEEE Press , 2016 : 1 - 6 .
MA J T , LIN S C , GAO H J , et al . Automatic modulation classification under non-Gaussian noise: a deep residual learning approach [C ] // Proceedings of ICC 2019 - 2019 IEEE International Conference on Communications (ICC) . Piscataway: IEEE Press , 2019 : 1 - 6 .
LI Y B , SHAO G P , WANG B . Automatic modulation classification based on bispectrum and CNN [C ] // Proceedings of2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC) . Piscataway: IEEE Press , 2019 : 311 - 316 .
TU Y , LIN Y . Deep neural network compression technique towards efficient digital signal modulation recognition in edge device [J ] . IEEE Access , 2019 ( 7 ): 58113 - 58119 .
HINTON G E , OSINDERO S , TEH Y W . A fast learning algorithm for deep belief nets [J ] . Neural Computation , 2006 , 18 ( 7 ): 1527 - 1554 .
MENDIS G J , WEI-KOCSIS J , MADANAYAKE A . Deep learning based radio-signal identification with hardware design [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2019 , 55 ( 5 ): 2516 - 2531 .
WANG F , WANG Y C , CHEN X . Graphic constellations and DBN based automatic modulation classification [C ] // Proceedings of 2017 IEEE 85th Vehicular Technology Conference (VTC Spring) . Piscataway: IEEE Press , 2017 : 1 - 5 .
WANG Q , DU P F , YANG J Y , et al . Transferred deep learning based waveform recognition for cognitive passive radar [J ] . Signal Processing , 2019 , 155 : 259 - 267 .
TANG B , TU Y , ZHANG Z Y , et al . Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks [J ] . IEEE Access , 2018 , 6 : 15713 - 15722 .
GREFF K , SRIVASTAVA R K , KOUTNÍK J , et al . LSTM: a search space odyssey [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2017 , 28 ( 10 ): 2222 - 2232 .
ZHANG M , ZENG Y , HAN Z D , et al . Automatic modulation recognition using deep learning architectures [C ] // Proceedings of2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) . Piscataway:IEEE Press , 2018 : 1 - 5 .
O'SHEA T J , WEST N . Radio machine learning dataset generation with GNU radio [Z ] . 2016 .
0
浏览量
714
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构