浏览全部资源
扫码关注微信
1. 浙江大学信息与电子工程学院,浙江 杭州 310027
2. 之江实验室,浙江 杭州 311121
3. 华为技术有限公司,上海 200120
[ "华郁秀(1993- ),男,浙江大学信息与电子工程学院博士生,主要研究方向为无线资源管理、网络切片、深度学习、强化学习" ]
[ "李荣鹏(1989- ),男,浙江大学信息与电子工程学院副教授,主要研究方向为智能通信网络、网络智能、网络切片" ]
[ "赵志峰(1975- ),男,浙江大学信息与电子工程学院教授,之江实验室科研发展部主任,主要研究方向为认知无线电、无线mesh 网络和SDN 在无线通信中的应用" ]
[ "吴建军(1977- ),男,华为技术有限公司未来网络架构实验室主任,主要研究方向为6G网络架构、5G端到端切片、下一代移动通信标准及产业发展" ]
[ "张宏纲(1967- ),男,浙江大学电子与信息工程学院教授,主要研究方向为认知无线电、绿色通信和下一代异构蜂窝网络架构" ]
网络出版日期:2021-06,
纸质出版日期:2021-06-20
移动端阅览
华郁秀, 李荣鹏, 赵志峰, 等. 基于生成对抗网络的MIMO信道估计方法[J]. 电信科学, 2021,37(6):14-22.
Yuxiu HUA, Rongpeng LI, Zhifeng ZHAO, et al. GAN-based channel estimation for massive MIMO system[J]. Telecommunications science, 2021, 37(6): 14-22.
华郁秀, 李荣鹏, 赵志峰, 等. 基于生成对抗网络的MIMO信道估计方法[J]. 电信科学, 2021,37(6):14-22. DOI: 10.11959/j.issn.1000-0801.2021135.
Yuxiu HUA, Rongpeng LI, Zhifeng ZHAO, et al. GAN-based channel estimation for massive MIMO system[J]. Telecommunications science, 2021, 37(6): 14-22. DOI: 10.11959/j.issn.1000-0801.2021135.
作为 5G 的一项关键技术,大规模多输入多输出(MIMO)系统通过在基站配备大量天线可以显著提高频谱效率和能效。然而,在大规模MIMO 系统中,精确的信道估计面临严峻挑战。为了在导频序列长度小于发射天线数量以及信道噪声强烈的情况下进行精确的估计信道,提出了一种基于生成对抗网络的大规模MIMO 信道估计方法N2N-GAN。N2N-GAN首先对接收端的导频信号进行去噪,然后使用条件生成对抗网络根据去噪后的导频信号估计信道矩阵。仿真实验证明,与传统的信道估计算法和基于深度学习的算法相比, N2N-GAN 对环境噪声具有更高的鲁棒性,而且可以适应更少导频符号和更多天线数量的场景。
As a key technology of 5G
massive MIMO system can significantly improve spectrum efficiency and energy efficiency by equipping a large number of antennas in base stations.However
in massive MIMO system
accurate channel estimation faces severe challenges.In order to estimate the channel accurately when the pilot sequence length is smaller than the number of transmitting antennas and the channel noise is strong
the estimation method N2N-GAN was proposed.N2N-GAN firstly denoised the pilot channel at the receiving end
and then used the conditional generative adversarial network to estimate the channel matrix according to the denoised pilot signal.Simulation experiments show that N2N-GAN achieves better robustness against noise compared with traditional channel estimation algorithms and deep learning-based methods.Meanwhile
it can adapt to scenarios with fewer pilot symbols and more antennas.
YANG P , XIAO Y , XIAO M , et al . 6G wireless communications:Vision and potential techniques [J ] . IEEE Network , 2019 , 33 ( 4 ): 70 - 75 .
AKYILDIZ I F , HAN C , NIE S . Combating the distance problem in the millimeter wave and terahertz frequency bands [J ] . IEEE Communications Magazine , 2018 , 56 ( 6 ): 102 - 108 .
HASSIBI B , HOCHWALD B M . How much training is needed in multiple-antenna wireless links? [J ] . IEEE Transactions on Information Theory , 2003 , 49 ( 4 ): 951 - 963 .
MA J , PING L . Data-aided channel estimation in large antenna systems [J ] . IEEE Transactions on Signal Processing , 2014 , 62 ( 12 ): 3111 - 3124 .
LI Y , TAO C , SECO-GRANADOS G , et al . Channel estimation and performance analysis of one-bit massive MIMO systems [J ] . IEEE Transactions on Signal Processing , 2017 , 65 ( 15 ): 4075 - 4089 .
HUANG C , ALEXANDEROPOULOS G C , ZAPPONE A , et al . Deep learning for UL/DL channel calibration in generic massive MIMO systems [C ] // Proceedings of IEEE International Conference on Communications(ICC) . Piscataway:IEEE Press , 2019 : 1 - 6 .
DONG P , ZHANG H , LI G Y , et al . Deep CNN-based channel estimation for mmWave massive MIMO systems [J ] . IEEE Journal of Selected Topics in Signal Processing , 2019 , 13 ( 5 ): 989 -- 1000 .
HE H , WEN C K , JIN S , et al . Deep learning-based channel estimation for beam space mmWave massive MIMO systems [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 5 ): 852 - 855 .
SOLTANI M , POURAHMADI V , MIRZAEI A , et al . Deep learning-based channel estimation [J ] . IEEE Communications Letters , 2019 , 23 ( 4 ): 652 - 655 .
SHEA T O , HOYDIS J . An introduction to deep learning for the physical layer [J ] . IEEE Transactions on Cognitive Communications and Networking , 2017 , 3 ( 4 ): 563 - 575 .
DORNER S , CAMMERER S , HOYDIS J , et al . Deep learning based communication over the air [J ] . IEEE Journal of Selected Topics in Signal Processing , 2017 , 12 ( 1 ): 132 - 143 .
GAO S , DONG P , PAN Z , et al . Deep learning based channel estimation for massive MIMO with mixed-resolution ADCs [J ] . IEEE Communications Letters , 2019 , 23 ( 11 ): 1989 - 1993 .
KANG J M , CHUN C J , KIM I M . Deep-learning-based channel estimation for wireless energy transfer [J ] . IEEE Communications Letters , 2018 , 22 ( 11 ): 2310 - 2313 .
DONG Y , WANG H , YAO Y D . Channel estimation for one-bit multiuser massive MIMO using conditional GAN [J ] . IEEE Communications Letters , 2020 .
ZHANG K , ZUO W , CHEN Y , et al . Beyond a gaussian denoiser:residual learning of deep CNN for image denoising [J ] . IEEE Transactions on Image Processing , 2017 , 26 ( 7 ): 3142 - 3155 .
BALEVI E , DOSHI A , ANDREWS J G . Massive MIMO channel estimation with an untrained deep neural network [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 3 ): 2079 - 2090 .
ULYANOV D , VEDALDI A , LEMPITSKY V . Deep image prior [C ] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2018 : 9446 - 9454 .
ALKHATEEB A . DeepMIMO:A generic deep learning dataset for millimeter wave and massive MIMO applications [J ] . arXiv preprint arXiv:1902.06435 , 2019 .
REMCOM . Wireless insite [Z ] . 2021 .
LEHTINEN J , MUNKBERG J , HASSELGREN J , et al . Noise2noise:learning image restoration without clean data [J ] . arXiv preprint arXiv:1803.04189 , 2018 .
GOODFELLOW I J , POUGET-ABADIE J ,, MIRZA M , et al . Generative adversarial networks [J ] . arXiv preprint arXiv:1406.2661 , 2014 .
MIRZA M , OSINDERO S . Conditional generative adversarial nets [J ] . arXiv preprint arXiv:1411.1784 , 2014 .
RONNEBERGER O , FISCHER P , BROX T . U-net:convolutional networks for biomedical image segmentation [C ] // Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention . Piscataway:IEEE Press , 2015 : 234 - 241 .
KINGMA D P , BA J . Adam:a method for stochastic optimization [J ] . arXiv preprint arXiv:1412.6980 , 2014 .
ISOLA P , ZHU J Y , ZHOU T , et al . Image-to-image translation with conditional adversarial networks [Z ] . 2017 .
0
浏览量
484
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构