浏览全部资源
扫码关注微信
[ "周志超(1989− ),男,中国联合网络通信集团有限公司智网创新中心工程师,主要研究方向为高精度定位、蜂窝移动通信、C-V2X等" ]
[ "冯毅(1976− ),男,中国联合网络通信集团有限公司智网创新中心高级工程师,主要研究方向为移动通信系统网络规划、认知无线电、异构无线网络传输技术、5G垂直应用等" ]
[ "夏小涵(1989− ),男,中国联合网络通信集团有限公司智网创新中心 C-V2X 研发工程师,主要研究方向为高精度定位、RSU、车路协同等" ]
[ "冯瑜瑶(1995− ),女,中国联合网络通信集团有限公司智网创新中心通信工程师,主要研究方向为无线移动通信、高精度定位、C-V2X及MEC解决方案等" ]
[ "蔡超(1984− ),男,中国联合网络通信集团有限公司智网创新中心总监,主要研究方向为无线移动通信、高精度定位、数据网、安全网关等" ]
[ "邱佳慧(1985− ),女,中国联合网络通信集团有限公司智网创新中心车联网技术总监,主要研究方向为车联网、5G通信、高精度定位等" ]
[ "杨立辉(1986− ),男,中国联合网络通信集团有限公司智网创新中心解决方案经理,主要研究方向为无线移动通信、高精度定位、视频编解码及传输等" ]
[ "乌云霄(1985− ),女,中国联合网络通信集团有限公司智网创新中心高级工程师,主要研究方向为移动通信、移动网络OSS" ]
网络出版日期:2021-08,
纸质出版日期:2021-08-20
移动端阅览
周志超, 冯毅, 夏小涵, 等. 基于移动蜂窝网的机器学习室外指纹定位方案[J]. 电信科学, 2021,37(8):85-95.
Zhichao ZHOU, Yi FENG, Xiaohan XIA, et al. Outdoor location scheme with fingerprinting based on machine learning of mobile cellular network[J]. Telecommunications science, 2021, 37(8): 85-95.
周志超, 冯毅, 夏小涵, 等. 基于移动蜂窝网的机器学习室外指纹定位方案[J]. 电信科学, 2021,37(8):85-95. DOI: 10.11959/j.issn.1000-0801.2021201.
Zhichao ZHOU, Yi FENG, Xiaohan XIA, et al. Outdoor location scheme with fingerprinting based on machine learning of mobile cellular network[J]. Telecommunications science, 2021, 37(8): 85-95. DOI: 10.11959/j.issn.1000-0801.2021201.
基于移动蜂窝网络技术的定位方案是提供网络优化、紧急救援、公安巡警和位置服务等应用的重要技术途径之一。传统的基于小区基站位置信息的定位方案定位精度低、定位误差大,无法满足某些定位应用需求。基于指纹定位的方案能够在基于小区粗定位方案基础上大幅度提升定位精度、节约计算成本、增强适用性,成为定位研究的热点。针对室外指纹定位的业务需求,深入研究分析了两种基于机器学习的栅格化和非栅格化室外指纹定位方案。通过参数加权、数据拟合等方法对于大规模指纹数据进行了清洗,提高数据源的有效性。通过划定研究区域、栅格化、构建指纹数据库、训练模型、修正模型、非栅格化、粗定位耦合、匹配参数、训练参数等子模块的实现,分析和优化了算法的运行效率和定位精度,确定了影响算法性能的关键指标。进而结合仿真结果,分析了两种基于指纹的定位方案的性能。最后介绍了基于机器学习的指纹定位方案在实际应用中的典型场景。
The positioning scheme based on mobile cellular network technology is one of the important technical approaches to provide network optimization
emergency rescue
police patrol and location services.The traditional positioning scheme based on cell base station location information has low positioning accuracy and large positioning error
so it cannot meet the requirements of some positioning applications.The scheme based on fingerprint location can greatly improve the location accuracy
save computational cost and enhance the usability based on the coarse location scheme of the cell and become the hotspot of the research.Rasterization and non-rasterization of outdoor fingerprint location scheme based on machine learning were studied and analyzed to meet the business requirements of outdoor fingerprint location.By means of parameter weighting
data fitting and other methods
large-scale fingerprint data were cleaned to improve the effectiveness of data sources.Through the realization of sub-modules such as demarcating research area
rasterizing
constructing fingerprint database
training model
correcting model
non-rasterizing
rough positioning coupling
matching parameter and training parameter
the operation efficiency and positioning accuracy of the algorithm were analyzed and optimized
and the key indexes affecting the algorithm performance were determined.Then
the performance of two fingerprint-based localization schemewas analyzed based on the simulation results.Finally
the typical scenarios of the fingerprint location scheme based on machine learning in practical application were presented.
裴登科 . 基于测量报告的 LTE 终端室外定位算法研究 [D ] . 合肥:中国科学技术大学 , 2019 .
PEI D K . Research on outdoor localization algorithms of LTE terminal based on measurement report [D ] . Hefei:University of Science and Technology of China , 2019 .
倪磊 . 基于LTE信令数据的指纹定位方法研究 [D ] . 大连:大连理工大学 , 2018 .
NI L . A fingerprint localization algorithm based on LTE signaling data [D ] . Dalian:Dalian University of Technology , 2018 .
韩亚楠 . LTE中RF指纹定位算法研究 [D ] . 北京:北京交通大学 , 2016 .
HAN Y N . Research on RF fingerprinting in LTE network [D ] . Beijing:Beijing Jiaotong University , 2016 .
张玄黎 , 杨东凯 , 王延昭 , 等 . 基于机器学习的室内高精度指纹定位方法研究 [C ] // 第十二届全国信号和智能信息处理与应用学术会议论文集 . 杭州:出版者不详 , 2018 : 518 - 524 .
ZHANG X L , YANG D K , WANG Y Z , et al . Research on indoor high-precision fingerprint localization method based on machine learning [C ] // Proceedings of the 12th National Conference on Signal and Intelligent Information Processing and Applications.Hangzhou:s.n . , 2018 : 518 - 524 .
卞智 . 基于机器学习算法的指纹匹配定位技术研究 [D ] . 北京:北京邮电大学 , 2017 .
BIAN Z . Research on fingerprinting positioning technologybased on machine learning [D ] . Beijing:Beijing University of Posts and Telecommunications , 2017 .
中评协课题组 . 2016年度我国主板市场资产评估情况统计分析报告(上) [J ] . 中国资产评估 , 2018 ( 2 ): 21 - 36 , 1 .
CAS Research Group . Statistical analysis report of asset appraisal in main board market of China,2016(part one) [J ] . Appraisal Journal of China , 2018 ( 2 ): 21 - 36 , 1 .
刘艳亮 , 张海平 , 徐彦田 , 等 . 全球卫星导航系统的现状与进展 [J ] . 导航定位学报 , 2019 , 7 ( 1 ): 18 - 21 , 27 .
LIU Y L , ZHANG H P , XU Y T , et al . Development status and trend of global navigation satellite system [J ] . Journal of Navigation and Positioning , 2019 , 7 ( 1 ): 18 - 21 , 27 .
党小超 , 马平川 , 郝占军 . 基于CSI的改进KNN室内定位方法 [J ] . 传感器与微系统 , 2019 , 38 ( 10 ): 51 - 53 .
DANG X C , MA P C , HAO Z J . Improved KNN indoor positioning method based on CSI [J ] . Transducer and Microsystem Technologies , 2019 , 38 ( 10 ): 51 - 53 .
李连亮 . 基于LANDMARK系统的KNN室内定位改进算法 [J ] . 山东工业技术 , 2015 ( 1 ): 213 , 229 .
LI L L . KNN indoor positioning improvement algorithm based on LANDMARK system [J ] . Shandong Industrial Technology , 2015 ( 1 ): 213 , 229 .
3GPP . Technical specification group radio access network:lte positioning protocol (LPP) [S ] . 2020 .
3GPP . Technical specification group radio access network:evolved universal terrestrial radio access (E-UTRA):LTE Positioning protocol A (LPPa) [S ] . 2020 .
0
浏览量
276
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构