浏览全部资源
扫码关注微信
1. 北京爱杰光电科技有限公司,北京 100190
2. 北京大学,北京 100871
3. 中国科学院上海光学精密机械研究所,上海 201800
[ "李德钊(1990− ),男,爱杰光电科技有限公司工程师,主要研究方向为硅基光电调制器、硅基光通信芯片等" ]
[ "许鹏飞(1992− ),男,北京大学在站博士后,主要研究方向为硅基光电计算架构、硅基无源器件系统、硅基光电子芯片等" ]
[ "朱科建(1990− ),男,北京大学在站博士后,主要研究方向为光通信、硅基光电子器件、人工智能等" ]
[ "周治平,男,博士,北京大学教授,主要研究方向为硅基光电子" ]
网络出版日期:2021-10,
纸质出版日期:2021-10-20
移动端阅览
李德钊, 许鹏飞, 朱科健, 等. 硅基光电子在通信中的应用和挑战[J]. 电信科学, 2021,37(10):1-11.
Dezhao LI, Pengfei XU, Kejian ZHU, et al. Applications and challenges of silicon-based optoelectronics in communication[J]. Telecommunications science, 2021, 37(10): 1-11.
李德钊, 许鹏飞, 朱科健, 等. 硅基光电子在通信中的应用和挑战[J]. 电信科学, 2021,37(10):1-11. DOI: 10.11959/j.issn.1000-0801.2021247.
Dezhao LI, Pengfei XU, Kejian ZHU, et al. Applications and challenges of silicon-based optoelectronics in communication[J]. Telecommunications science, 2021, 37(10): 1-11. DOI: 10.11959/j.issn.1000-0801.2021247.
硅基光电子技术拥有光的宽带、高速和抗干扰特性以及微电子技术在大规模集成、低能耗、低成本等方面的优势。最近十年,硅基光电子技术开始进入通信产业领域,在800 Gbit/s以上的高速短距应用场景中发挥优势,对传统磷化铟(InP)的通信光模块形成挑战。浅谈硅基光电子技术在通信中的应用和发展,同时简要介绍硅基光电子技术在应用中的一些挑战。解决器件性能、封装技术、自动化软件等方面的不足,才能实现硅基光电子技术长足发展。
Silicon-based optoelectronics technology has the advantages of photonics
such as broadband
high-speed and anti-interference
as well as the advantages of microelectronics
such as large-scale integration
low energy consumption and low cost.Silicon-based optoelectronics is showing superior advantages in high-speed and short-reach communications and posing a challenge to the conventional indium phosphide (InP) optical modules.The application
development and technical challenges of silicon-based optoelectronics technology in communications were briefly discussed.There is an urgent need to develop high performance devices
packaging technology
automation software for further development of the silicon-based optoelectronic technology.
SODAN A C , MACHINA J , DESHMEH A , et al . Parallelism via multithreaded and multicore CPUs [J ] . Computer , 2010 , 43 ( 3 ): 24 - 32 .
BARWICZ T , BYUN H , GAN F , et al . Silicon photonics for compact,energy-efficient interconnects [J ] . Journal of Optical Networking , 2007 , 6 ( 1 ): 63 - 73 .
ZHOU Z P , CHEN R X , LI X B , et al . Development trends in silicon photonics for data centers [J ] . Optical Fiber Technology , 2018 ( 44 ): 13 - 23 .
ZHOU Z P , TU Z J , LI T T , et al . Silicon photonics for advanced optical interconnections [J ] . Journal of Lightwave Technology , 2015 , 33 ( 4 ): 928 - 933 .
ZHOU Z P , TU Z J , YIN B , et al . Development trends in silicon photonics [J ] . Chinese Optics Letters , 2013 , 11 ( 1 ): 76 - 81 .
ZHOU Z P , WANG X J , YI H X , et al . Silicon photonics for advanced optical communication systems [C ] // SPIE OPTO.ProcSPIE 8630,Optoelectronic Interconnects XIII .[S.l.:s.n. ] , 2013 ( 8630 ): 198 - 210 .
MILLER S E . Integrated optics:an introduction [J ] . Bell System Technical Journal , 1969 , 48 ( 7 ): 2059 - 2069 .
SMIT M , WILLIAMS K , VAN DER TOL J . Past,present,and future of InP-based photonic integration [J ] . APL Photonics , 2019 , 4 ( 5 ): 050901 .
CHEN L , DOERR C , AROCA R , et al . Silicon photonics for 100G-and-beyond coherent transmissions [C ] // Proceedings of Optical Fiber Communication Conference.Washington , D.C.:OSA , 2016 .
DOERR C , CHEN L , VERMEULEN D , et al . Single-chip silicon photonics 100-Gbit/s coherent transceiver [C ] // Proceedings of Optical Fiber Communication Conference:Postdeadline Papers.Washington , D.C.:OSA , 2014 .
TU Z J , GONG P , ZHOU Z P , et al . Ultracompact 100 Gbit/s coherent receiver monolithically integrated on silicon [J ] . Japanese Journal of Applied Physics , 2016 , 55 ( 4S ): 04EC04 .
ALDUINO A , . Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers [C ] // Proceedings of 2010 IEEE Hot Chips 22 Symposium (HCS) . Piscataway:IEEE Press , 2010 : 1 - 29 .
DRISCOLL J B , DOUSSIERE P , ISLAM S , et al . First 400G 8-channel CWDM silicon photonic integrated transmitter [C ] // Proceedings of 2018 IEEE 15th International Conference on Group IV Photonics (GFP) . Piscataway:IEEE Press , 2018 : 1 - 2 .
YU H J , DOUSSIERE P , PATEL D , et al . 400Gbpsfully integrated DR4 silicon photonics transmitter for data center applications [C ] // Proceedings of Optical Fiber Communication Conference (OFC) 2020.Washington , D.C.:OSA , 2020 .
FATHOLOLOUMI S , NGUYEN K , MAHALINGAM H , et al . 1.6Tbit/s silicon photonics integrated circuit for co-packaged optical-IO switch applications [C ] // Proceedings of Optical Fiber Communication Conference (OFC) 2020.Washington , D.C.:OSA , 2020 .
ZHONG K P , MO J Y , GRZYBOWSKI R , et al . 400 Gbps PAM-4 signal transmission using a monolithic laser integrated silicon photonics transmitter [C ] // Proceedings of Optical Fiber Communication Conference (OFC) 2019.Washington , D.C.:OSA , 2019 .
SUN C , WADE M T , LEE Y , et al . Single-chip microprocessor that communicates directly using light [J ] . Nature , 2015 , 528 ( 7583 ): 534 - 538 .
SOREF R , BENNETT B . Electrooptical effects in silicon [J ] . IEEE Journal of Quantum Electronics , 1987 , 23 ( 1 ): 123 - 129 .
周治平 . 硅基光电子学及其应用 [J ] . 光学与光电技术 , 2018 , 16 ( 1 ): 6 - 10 .
ZHOU Z P . Silicon photonics and its applications [J ] . Optics&Optoelectronic Technology , 2018 , 16 ( 1 ): 6 - 10 .
周治平 , 杨丰赫 , 陈睿轩 , 等 . 硅基光电子:微电子与光电子的交融点 [J ] . 微纳电子与智能制造 , 2019 , 1 ( 3 ): 4 - 15 .
ZHOU Z P , YANG F H , CHEN R X , et al . Silicon photon-ics—aconvergingpoint of microelectronics and optoelectron-ics [J ] . Micro/Nano Electronics and Intelligent Manufacturing , 2019 , 1 ( 3 ): 4 - 15 .
SCARCELLA C , LEE J S , EASON C , et al . Plat4m:Progressing silicon photonics in Europe [C ] // Proceedings of the Photonics,F,2016 Multidisciplinary Digital Publishing Institute .[S.l.:s.n. ] , 2016 .
BOEUF F , CREMER S , TEMPORITI E , et al . Recent progress in Silicon Photonics R&D and manufacturing on 300mm wafer platform [C ] // Proceedings of 2015 Optical Fiber Communications Conference andExhibition(OFC) . Piscataway:IEEE Press , 2015 : 1 - 3 .
AOKI T , SEKIGUCHI S , SIMOYAMA T , et al . On-package high-density silicon photonics optical transceiver [C ] // Proceedings of 2018 European Conference on Optical Communication (ECOC) . Piscataway:IEEE Press , 2018 : 1 - 3 .
ZILKIE A J , SRINIVASAN P , TRITA A , et al . Multi-micron silicon photonics platform for highly manufacturable and versatile photonic integrated circuits [J ] . IEEE Journal of Selected Topics in Quantum Electronics , 2019 , 25 ( 5 ): 1 - 13 .
SRINIVASAN P , MUTH K , MASUDA K , et al . Hybrid o-band electro-absorption modulators on multi-micron waveguide silicon photonics platform for optical engine applications [C ] // Proceedings of 45th European Conference on Optical Communication (ECOC 2019) . Institution of Engineering and Technology , 2019 .
DE DOBBELAERE P , AYAZI A , CHI Y , et al . Packaging of silicon photonics systems [C ] // Proceedings of Optical Fiber Communication Conference.Washington , D.C.:OSA , 2014 .
DE DOBBELAERE P , NARASIMHA A , MEKIS A , et al . Silicon photonics for high data rate optical interconnect [C ] // Proceedings of 2012 Optical Interconnects Conference . Piscataway:IEEE Press , 2012 : 113 - 114 .
DE DOBBELAERE P , ARMIJO G , BALARDETA J , et al . Silicon-photonics-based optical transceivers for high-speed interconnect applications [C ] // SPIEOPTO.ProcSPIE 9775,NextGeneration Optical Networks for Data Centers and Short-Reach Links III .[S.l.:s.n ] , 2016 , 9775 : 10 - 14 .
FANG A W , PARK H , COHEN O , et al . Electrically pumped hybrid AlGaInAs-silicon evanescent laser [J ] . Optics Express , 2006 , 14 ( 20 ): 9203 .
LIAO L , LIU A , RUBIN D , et al . 40 Gbit/s silicon optical modulator for high-speed applications [J ] . Electronics Letters , 2007 , 43 ( 22 ): 1196 .
PARK H , FANG A , KODAMA S , et al . Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells [J ] . Optics Express , 2005 , 13 ( 23 ): 9460 - 9464 .
WON R . Integrating silicon photonics [J ] . Nature Photonics , 2010 , 4 ( 8 ): 498 - 499 .
ZHANG H , ZHU B , PFAU T , et al . Real-time transmission of single-carrier 400 Gbit/s and 600 Gbit/s 64QAM over 200km-span link [C ] // Proceedings of 45th European Conference on Optical Communication (ECOC 2019) .[S.l.:s.n. ] . 2019 : 1 - 3 .
KUPIJAI S , RHEE H , AL-SAADI A , , et al . 25 Gbit/s silicon photonics interconnect using a transmitter based on a nodematched-diode modulator [J ] . Journal of Lightwave Technology , 2016 , 34 ( 12 ): 2920 - 2923 .
MEISTER S , GREHN M , RHEE H , et al . Silicon photonics for 100 Gbit/s intra-data center optical interconnects [C ] // SPIEOPTO.ProcSPIE 9753,Optical Interconnects XVI ,[S.l.:s.n. ] , 2016 ( 9753 ): 33 - 39 .
ZHONGF GONGP ZHOU Z P , et al . High performance optical modulator and detector for 100 Gbit/s transmission system [J ] . ZTE Communications , 2017 , 15 ( 3 ): 46 - 51 .
ZHOU Z . Silicon photonics in China [J ] . Electronics Letters , 2009 , 45 ( 12 ): 588 - 591 .
ZHOU Z P , BAI B W , LIU L . Silicon on-chip PDM and WDM technologies via plasmonics and subwavelength grating [J ] . IEEE Journal of Selected Topics in Quantum Electronics , 2019 , 25 ( 3 ): 1 - 13 .
ZHOU Z P , YIN B , DENG Q Z , et al . Lowering the energy consumption in silicon photonic devices and systems [J ] . Photonics Research , 2015 , 3 ( 5 ): B28 .
XIE C J , MAGILL P , LI D , et al . Real-time demonstration of silicon-photonics-based QSFP-DD 400GBASE-DR4 transceivers for datacenter applications [C ] // Proceedings of 2020 Optical Fiber Communications Conference and Exhibition (OFC) . Piscataway:IEEE Press , 2020 : 1 - 3 .
ZHALEHPOUR S , LIN J C , GUO M Q , et al . All-silicon IQ modulator for 100 GBaud 32QAM transmissions [C ] // Proceedings of Optical Fiber Communication Conference Postdeadline Papers 2019.Washington , D.C.:OSA , 2019 .
ZHANG H G , LI M F , ZHANG Y G , et al . 800 Gbit/s transmission over 1 km single-mode fiber using a four-channel silicon photonic transmitter [J ] . Photonics Research , 2020 , 8 ( 11 ): 1776 .
HU Z P , SHAO S Z , XIAO Z X , et al . 100 Gbit/s PSM-4 silicon photonics transceiver for intra-datacenter on a 200-mm wafer [C ] // Proceedings of Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications 2020 (ACP/IPOC).Washington , D.C.:OSA , 2020 .
DEBRAY A , MALINGE J , MOUNIER E . Silicon Photonics-Market and Technology Report 2020 [M ] . Yole Développement,Apr , 2020 .
POULTON C V , BYRD M J , RUSSO P , et al . Long-range LiDAR and free-space data communication with high- performance optical phased arrays [J ] . IEEE Journal of Selected Topics in Quantum Electronics , 2019 , 25 ( 5 ): 1 - 8 .
庄东炜 , 韩晓川 , 李雨轩 , 等 . 硅基光电子集成光控相控阵的研究进展 [J ] . 激光与光电子学进展 , 2018 , 55 ( 5 ): 050001 .
ZHUANG D W , HAN X C , LI Y X , et al . Silicon-based optoe-lectronic integrated optical phased array [J ] . Laser & Optoelec-tronics Progress , 2018 , 55 ( 5 ): 050001 .
FERNÁNDEZ GAVELA A , GRAJALES GARCÍA D , RAMIREZ J , et al . Last advances in silicon-based optical biosensors [J ] . Sensors , 2016 , 16 ( 3 ): 285 .
SHEN Y C , HARRIS N C , SKIRLO S , et al . Deep learning with coherent nanophotonic circuits [J ] . 2017 IEEE Photonics SocietySummer Topical Meeting Series (SUM) , 2017 : 189 - 190 .
郝然 . 对硅基光电子技术发展的思考 [J ] . 中兴通讯技术 , 2017 , 23 ( 5 ): 52 - 55 .
HAO R . Development of the silicon photonic technology [J ] . ZTE Technology Journal , 2017 , 23 ( 5 ): 52 - 55 .
杨建义 , 王根成 . 硅基光子技术发展的特点、机遇与挑战 [J ] . 中兴通讯技术 , 2017 , 23 ( 5 ): 47 - 51 .
YANG J Y , WANG G C . Features,opportunities and challenges of silicon photonics [J ] . ZTE Technology Journal , 2017 , 23 ( 5 ): 47 - 51 .
ZHOU Z P , YIN B , MICHEL J . On-chip light sources for silicon photonics [J ] . Light:Science & Applications , 2015 , 4 ( 11 ): e358 .
周治平 , 王兴军 , 冯俊波 , 等 . 硅基微纳光电子系统中光源的研究现状及发展趋势 [J ] . 激光与光电子学进展 , 2009 , 46 ( 10 ): 28 - 35 .
ZHOU Z P , WANG X J , FENG J B , et al . Research progress and development trends of light sourcefor silicon based micro-nano optoelectronic systems [J ] . Laser & Optoelectronics Progress , 2009 , 46 ( 10 ): 28 - 35 .
KANI J I , TERADA J , HATANO T , et al . Future optical access network enabled by modularization and softwarization of access and transmission functions [J ] . Journal of Optical Communications and Networking , 2020 , 12 ( 9 ): D48 - D56 .
PETOUSI D , ZIMMERMANN L , GAJDA A , et al . Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach–Zehnder modulators for high-speed operation [J ] . IEEE Journal of Selected Topics in Quantum Electronics , 2015 , 21 ( 4 ): 199 - 206 .
DEROSE C T , TROTTER D C , ZORTMAN W A , et al . High speed travelling wave carrier depletion silicon Mach-Zehnder modulator [C ] // Proceedings of 2012 Optical Interconnects Conference . Piscataway:IEEE Press , 2012 : 135 - 136 .
LI M F , WANG L , LI X , et al . Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications [J ] . Photonics Research , 2018 , 6 ( 2 ): 109 .
LIU A S , JONES R , LIAO L , et al . A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor [J ] . Nature , 2004 , 427 ( 6975 ): 615 - 618 .
XU H , LI X Y , XIAO X , et al . High-speed silicon modulator with band equalization [J ] . Optics Letters , 2014 , 39 ( 16 ): 4839 - 4842 .
JAFARI O , SEPEHRIAN H , SHI W , et al . High-efficiency silicon photonic modulator using coupled Bragg grating resonators [J ] . Journal of Lightwave Technology , 2019 , 37 ( 9 ): 2065 - 2075 .
FANG Q , SONG J F , LIOW T Y , et al . Ultralow power silicon photonics thermo-optic switch with suspended phase arms [J ] . IEEE Photonics Technology Letters , 2011 , 23 ( 8 ): 525 - 527 .
QI N , XIAO X , HU S , et al . Co-design and demonstration of a 25-Gbit/s silicon-photonic Mach–Zehnder modulator with a CMOS-based high-swing driver [J ] . IEEE Journal of Selected Topics in Quantum Electronics , 2016 , 22 ( 6 ): 131 - 140 .
LI X B , YANG F H , ZHONG F , et al . Single-drive high-speed lumped depletion-type modulators toward 10 fJ/bit energy consumption [J ] . Photonics Research , 2017 , 5 ( 2 ): 134 .
XIAO XI M L , . Substrae removed silcon mach-zehnder modulator for high baud rate optical intesity modulations [C ] // Proceedings of Optical Fiber Communication Conference .[S.l.:s.n. ] , 2016 .
RITO P , GARCÍA LÓPEZ I , PETOUSI D , et al . A monolithically integrated segmented linear driver and modulator in EPIC 0.25 μm SiGe:C BiCMOS platform [J ] . IEEE Transactions on Microwave Theory and Techniques , 2016 , 64 ( 12 ): 4561 - 4572 .
TIMURDOGAN E , SU Z , SHIUE R J , et al . 400G silicon photonics integrated circuit transceiver chipsets for CPO,OBO,and pluggable modules [C ] // Proceedings of 2020 Optical Fiber Communications Conference andExhibition(OFC) . Piscataway:IEEE Press , 2020 : 1 - 3 .
WADE M , ANDERSON E , ARDALAN S , et al . TeraPHY:a chiplet technology for low-power,high-bandwidth in-package optical I/O [J ] . IEEE Micro , 2020 , 40 ( 2 ): 63 - 71 .
LENTINE A L , DEROSE C T . Challenges in the implementation of dense wavelength division multiplexed (DWDM) optical interconnects using resonant silicon photonics [C ] // Proceedings of Broadband Access Communication Technologies X .[S.l.:s.n. ] , 2016 .
DENG Q Z , LIU L , ZHANG R , et al . Athermal and flat-topped silicon Mach-Zehnder filters [J ] . Optics Express , 2016 , 24 ( 26 ): 29577 .
HORST F , GREEN W M , ASSEFA S , et al . Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing [J ] . Optics Express , 2013 , 21 ( 10 ): 11652 - 11658 .
KIM D W , BARKAI A , JONES R , et al . Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach-Zehnder interferometers [J ] . Optics Letters , 2008 , 33 ( 5 ): 530 - 532 .
JEONG S H , SHIMURA D , SIMOYAMA T , et al . Si-nanowire-based multistage delayed Mach–Zehnder interferometer optical MUX/DeMUX fabricated by an ArF-immersion lithography process on a 300 mm SOI wafer [J ] . Optics Letters , 2014 , 39 ( 13 ): 3702 .
LIU F M , YANG B B , LI B X , et al . A surface mounting embedded optical transceiver with Bi-directional data rate of eight channels×10 Gbit/s [J ] . Fiber and Integrated Optics , 2014 , 33 ( 1/2 ): 17 - 25 .
DOERR C , HEANUE J , CHEN L , et al . Silicon photonics coherent transceiver in a ball-grid array package [C ] // Proceedings of Optical Fiber Communication Conference Postdeadline Papers.Washington , D.C.:OSA , 2017 .
KNICKERBOCKER J U , PATEL C S , ANDRY P S , et al . 3-D silicon integration and silicon packaging technology using silicon through-vias [J ] . IEEE Journal of Solid-State Circuits , 2006 , 41 ( 8 ): 1718 - 1725 .
BARWICZ T , LICHOULAS T W , TAIRA Y , et al . Automated,high-throughput photonic packaging [J ] . Optical Fiber Technology , 2018 ( 44 ): 24 - 35 .
PAVARELLI N , LEE J S , RENSING M , et al . Optical and electronic packaging processes for silicon photonic systems [J ] . Journal of Lightwave Technology , 2015 , 33 ( 5 ): 991 - 997 .
KOPP C , BERNABÉ S ,, BAKIR B B , et al . Silicon photonic circuits:on-CMOS integration,fiber optical coupling,and packaging [J ] . IEEE Journal of Selected Topics in Quantum Electronics , 2011 , 17 ( 3 ): 498 - 509 .
周治平 , 郜定山 , 汪毅 , 等 . 硅基集成光电子器件的新进展 [J ] . 激光与光电子学进展 , 2007 , 44 ( 2 ): 31 - 38 .
ZHOU Z P , GAO D S , WANG Y , et al . New progress of sili-con-based integrated optoelectronic devices [J ] . Laser & Optoe-lectronics Progress , 2007 , 44 ( 2 ): 31 - 38 .
NORIKI A , AMANO T , SHIMURA D , et al . 45-degree curved micro-mirror for vertical optical I/O of silicon photonics chip [J ] . Optics Express , 2019 , 27 ( 14 ): 19749 .
SNYDER B , MANGAL N , LEPAGE G , et al . Packaging and assembly challenges for 50G silicon photonics interposers [C ] // Proceedings of 2018 Optical Fiber Communications Conference and Exposition (OFC) . Piscataway:IEEE Press , 2018 : 1 - 3 .
WOOD M , SUN P , REANO R M . Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits [J ] . Optics Express , 2012 , 20 ( 1 ): 164 - 172 .
FANG Q , LIOW T Y , SONG J F , et al . Suspended optical fiber-to-waveguide mode size converter for Silicon photonics [J ] . Optics Express , 2010 , 18 ( 8 ): 7763 .
MARCHETTI R , LACAVA C , CARROLL L , et al . Coupling strategies for silicon photonics integrated chips [J ] . Photonics Research , 2019 , 7 ( 2 ): 201 .
CARROLL L , LEE J S , SCARCELLA C , et al . Photonic packaging:transforming silicon photonic integrated circuits into photonic devices [J ] . Applied Sciences , 2016 , 6 ( 12 ): 426 .
LINDENMANN N , BALTHASAR G , HILLERKUSS D , et al . Photonic wire bonding:a novel concept for chip-scale interconnects [J ] . Optics Express , 2012 , 20 ( 16 ): 17667 - 17677 .
LINDENMANN N , BALTHASAR G , PALMER R , et al . Photonic wire bonding for single-mode chip-to-chip interconnects [C ] // Proceedings of 8th IEEE International Conference on Group IV Photonics . Piscataway:IEEE Press , 2011 : 380 - 382 .
JIMENEZ GORDILLO O A , CHAITANYA S , CHANG Y C , et al . Plug-and-play fiber to waveguide connector [J ] . Optics Express , 2019 , 27 ( 15 ): 20305 .
BUSCAINO B , TAYLOR B D , KAHN J M . Multi-Tbit/s-per-fiber coherent co-packaged optical interfaces for data center switches [J ] . Journal of Lightwave Technology , 2019 , 37 ( 13 ): 3401 - 3412 .
MINKENBERG C , KRISHNASWAMY R , ZILKIE A , et al . Co-packaged datacenter optics:opportunities and challenges [J ] . IET Optoelectronics , 2021 , 15 ( 2 ): 77 - 91 .
BOGAERTS W , CHROSTOWSKI L . Silicon photonics circuit design:methods,tools and challenges [J ] . Laser & Photonics Reviews , 2018 , 12 ( 4 ): 1700237 .
CHROSTOWSKI L , HOCHBERG M . Silicon photonics design [M ] . Cambridge : Cambridge University Press , 2015 .
CHROSTOWSKI L , SHOMAN H , HAMMOOD M , et al . Silicon photonic circuit design using rapid prototyping foundry process design kits [J ] . IEEE Journal of Selected Topics in Quantum Electronics , 2019 , 25 ( 5 ): 1 - 26 .
LEE K K , LIM D R , LUAN H C , et al . Effect of size and roughness on light transmission in a Si/SiO 2 waveguide:experiments and model [J ] . Applied Physics Letters , 2000 , 77 ( 11 ): 1617 - 1619 .
LADOUCEUR F , LOVE J D , SENDEN T J . Effect of side wall roughness in buried channel waveguides [J ] . IEEE Proceedings Optoelectronics , 1994 , 141 ( 4 ): 242 - 248 .
FEILCHENFELD N B , NUMMY K , BARWICZ T , et al . Silicon photonics and challenges for fabrication [C ] // SPIEAdvancedLithography.Proc SPIE 10149,Advanced Etch Technology for Nanopatterning VI .[S.l.:s.n. ] . 2017 .
郭进 , 冯俊波 , 曹国威 . 硅光子芯片工艺与设计的发展与挑战 [J ] . 中兴通讯技术 , 2017 , 23 ( 5 ): 7 - 10 .
GUO J , FENG J B , CAO G W . The progress and chal enges of silicon photonics process and design [J ] . ZTE Technology Jour-nal , 2017 , 23 ( 5 ): 7 - 10 .
ZHANG Y , BAEHR-JONES T ,, DING R , et al . Silicon multi-project wafer platforms for optoelectronic system integration [C ] // Proceedings of 9th International Conference on Group IV Photonics (GFP) . Piscataway:IEEE Press , 2012 : 63 - 65 .
0
浏览量
1109
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构