浏览全部资源
扫码关注微信
1. 中信科移动通信技术股份有限公司,北京 100083
2. 无线移动通信国家重点实验室(电信科学技术研究院有限公司),北京 100191
3. 中国信息通信研究院,北京 100191
[ "黄秋萍(1987- ),女,博士,中信科移动通信技术股份有限公司高级工程师,主要研究方向为大规模天线技术、移动通信新技术研究与标准制定等" ]
[ "刘晓峰(1981- ),男,博士,中国信息通信研究院无线通信创新中心副总工程师、正高级工程师,主要研究方向为移动通信系统设计等" ]
[ "高秋彬(1980- ),男,博士,中信科移动通信技术股份有限公司正高级工程师, 主要研究方向为通信系统协议设计、多天线系统、协作传输、信号处理算法以及系统建模与评估等" ]
[ "刘正宣(1982- ),男,博士,中信科移动通信技术股份有限公司工程师,主要研究方向为大规模多输入多输出和基于人工智能的信道状态信息反馈等" ]
[ "金立强(1991- ),男,博士,无线移动通信国家重点实验室(电信科学技术研究院有限公司)博士后研究员,主要研究方向为信道编码、AI在通信物理层应用等" ]
[ "孙韶辉(1972- ),男,博士,中信科移动通信技术股份有限公司副总经理、教授级高级工程师,主要研究方向为移动通信系统设计及多天线技术、卫星通信和定位等关键技术" ]
网络出版日期:2022-03,
纸质出版日期:2022-03-20
移动端阅览
黄秋萍, 刘晓峰, 高秋彬, 等. 基于人工智能的大规模天线信道状态信息反馈研究[J]. 电信科学, 2022,38(3):74-83.
Qiuping HUANG, Xiaofeng LIU, Qiubin GAO, et al. Study of channel state information feedback based on artificial intelligence[J]. Telecommunications science, 2022, 38(3): 74-83.
黄秋萍, 刘晓峰, 高秋彬, 等. 基于人工智能的大规模天线信道状态信息反馈研究[J]. 电信科学, 2022,38(3):74-83. DOI: 10.11959/j.issn.1000-0801.2022051.
Qiuping HUANG, Xiaofeng LIU, Qiubin GAO, et al. Study of channel state information feedback based on artificial intelligence[J]. Telecommunications science, 2022, 38(3): 74-83. DOI: 10.11959/j.issn.1000-0801.2022051.
信道状态信息(channel state information,CSI)的精确获取是大规模天线发挥效能的关键。在现有的通信系统中,上下行链路互易性不理想时,基于码本进行下行链路的 CSI 反馈。随着天线规模的增大,码本CSI反馈所需要的开销也越来越大。给出了基于人工智能(artificial intelligence,AI)的CSI反馈压缩方法,分析了基于AI的CSI反馈的标准化影响、通信流程与面临的挑战,提供了评估结果。评估结果表明,相对于基于频域基向量压缩的码本CSI反馈,基于AI的CSI反馈在相同的反馈精度下可以显著地降低反馈开销。
Accurate acquisition of CSI (channel state information) is the key to the performance of massive MIMO.In current communication systems
when the reciprocity of uplink and downlink is not ideal
codebook-based CSI feedback is used for downlink CSI acquisition.With the increase of antenna scale
codebook-based CSI feedback needs more and more overhead.The CSI feedback compression method based on AI (artificial intelligence) was presented
and the standardization impact
communication process and challenges of CSI feedback based on AI were analyzed.Besides
evaluation results were provided.The evaluation results show that compared with codebook-based CSI feedback based on frequency domain basis vector compression
CSI feedback based on AI can significantly reduce the feedback cost at the same feedback accuracy.
CHATAUT R , AKL R . Massive MIMO systems for 5G and beyond networks-overview,recent trends,challenges,and future research direction [J ] . Sensors (Basel,Switzerland) , 2020 , 20 ( 10 ): 2753 .
BJORNSON E , VAN DER PERRE L , BUZZI S , et al . Massive MIMO in sub-6 GHz and mmWave:physical,practical,and use-case differences [J ] . IEEE Wireless Communications , 2019 , 26 ( 2 ): 100 - 108 .
陈山枝 , 孙韶辉 , 苏昕 , 等 . 大规模天线波束赋形技术原理与设计 [M ] . 北京:人民邮电出版社 , 2019 .
CHEN S Z , SUN S H , SU X , et al . Principles and design of massive beamforming technology [M ] . Beijing : Posts & Telecom Press , 2019 .
3GPP . NR; Physical layer procedures for data (V17.0.0):TS 38.214 [S ] . 2021 .
KUO P H , KUNG H T , TING P G . Compressive sensing based channel feedback protocols for spatially-correlated massive antenna arrays [C ] // Proceedings of 2012 IEEE Wireless Communications and Networking Conference . Piscataway:IEEE Press , 2012 : 492 - 497 .
SIM M S , PARK J , CHAE C B , et al . Compressed channel feedback for correlated massive MIMO systems [J ] . Journal of Communications and Networks , 2016 , 18 ( 1 ): 95 - 104 .
GAO Z , DAI L L , WANG Z C , et al . Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO [J ] . IEEE Transactions on Signal Processing , 2015 , 63 ( 23 ): 6169 - 6183 .
CHEON H , PARK B , HONG D . Adaptive multicarrier system with reduced feedback information in wideband radio channels [C ] // Proceedings of Gateway to 21st Century Communications Village,IEEE VTS 50th Vehicular Technology Conference (Cat.No.99CH36324) . Piscataway:IEEE Press , 1999 : 2880 - 2884 .
YE H , LI G Y , JUANG B H . Power of deep learning for channel estimation and signal detection in OFDM systems [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 1 ): 114 - 117 .
YANG Y W , GAO F F , LI G Y , et al . Deep learning-based downlink channel prediction for FDD massive MIMO system [J ] . IEEE Communications Letters , 2019 , 23 ( 11 ): 1994 - 1998 .
KANG J M , CHUN C J , KIM I M . Deep-learning-based channel estimation for wireless energy transfer [J ] . IEEE Communications Letters , 2018 , 22 ( 11 ): 2310 - 2313 .
GUO J J , WEN C K , JIN S , et al . Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback:design,simulation,and analysis [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 4 ): 2827 - 2840 .
HSIEH C H , CHEN J Y , NIEN B H . Deep learning-based indoor localization using received signal strength and channel state information [J ] . IEEE Access , 2019 ( 17 ): 33256 - 33267 .
WANG T Q , WEN C K , WANG H Q , et al . Deep learning for wireless physical layer:opportunities and challenges [J ] . China Communications , 2017 , 14 ( 11 ): 92 - 111 .
LU Z L , WANG J T , SONG J . Multi-resolution CSI feedback with deep learning in massive MIMO system [C ] // Proceedings of ICC 2020 - 2020 IEEE International Conference on Communications . Piscataway:IEEE Press , 2020 : 1 - 6 .
LU Z L , WANG J T , SONG J . Binary neural network aided CSI feedback in massive MIMO system [J ] . IEEE Wireless Communications Letters , 2021 , 10 ( 6 ): 1305 - 1308 .
ZHANG Y Y , ZHANG X C , LIU Y . Deep learning based CSI compression and quantization with high compression ratios in FDD massive MIMO systems [J ] . IEEE Wireless Communications Letters , 2021 , 10 ( 10 ): 2101 - 2105 .
LIU Z Y , DEL ROSARIO M , DING Z . A Markovian model-driven deep learning framework for massive MIMO CSI feedback [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 2 ): 1214 - 1228 .
CAO Z , SHIH W T , GUO J J , et al . Lightweight convolutional neural networks for CSI feedback in massive MIMO [J ] . IEEE Communications Letters , 2021 , 25 ( 8 ): 2624 - 2628 .
GAO M , LIAO T M , LU Y B . Fully connected feed forward neural networks based CSI feedback algorithm [J ] . China Communications , 2021 , 18 ( 1 ): 43 - 48 .
3GPP . RP-213560:New SI:study on artificial intelligence (AI)/machine learning (ML) for NR air interface [S ] . 2021 .
WEN C K , SHIH W T , JIN S . Deep learning for massive MIMO CSI feedback [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 5 ): 748 - 751 .
LIU Z Y , ZHANG L , DING Z . Exploiting Bi-directional channel reciprocity in deep learning for low rate massive MIMO CSI feedback [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 3 ): 889 - 892 .
WANG T Q , WEN C K , JIN S , et al . Deep learning-based CSI feedback approach for time-varying massive MIMO channels [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 2 ): 416 - 419 .
LU C , XU W , SHEN H , et al . MIMO channel information feedback using deep recurrent network [J ] . IEEE Communications Letters , 2019 , 23 ( 1 ): 188 - 191 .
0
浏览量
612
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构