浏览全部资源
扫码关注微信
1. 上海交通大学网络空间安全学院,上海 200240
2. 中交航信(上海)科技有限公司,上海 200086
3. 华东师范大学通信与电子工程学院,上海 200241
[ "董浩(1994- ),男,上海交通大学网络空间安全学院博士生,主要研究方向为低轨卫星网络与Sat5G融合网络安全" ]
[ "宋亮(1982- ),男,中交航信(上海)科技有限公司高级工程师、副总经理,主要研究方向为海上通信信息、交通应急通信及移动卫星通信" ]
[ "化存卿(1976- ),男,博士,上海交通大学网络空间安全学院教授,主要研究方向为B5G/6G 移动通信系统安全、低轨卫星网络与Sat5G融合网络安全、工业互联网及边缘计算安全、高通量无线区块链系统及应用等" ]
[ "刘玲亚(1987- ),女,博士,华东师范大学通信与电子工程学院副研究员,主要研究方向为无线网络系统资源优化、智能信号处理、卫星组网通信" ]
[ "唐俊华(1973- ),女,博士,上海交通大学网络空间安全学院副教授,主要研究方向为海上通信信息、交通应急通信及移动卫星通信" ]
网络出版日期:2022-05,
纸质出版日期:2022-05-20
移动端阅览
董浩, 宋亮, 化存卿, 等. 海上通信技术发展与研究综述[J]. 电信科学, 2022,38(5):1-17.
Hao DONG, Liang SONG, Cunqing HUA, et al. Survey of the research and development on the maritime communication technology[J]. Telecommunications science, 2022, 38(5): 1-17.
董浩, 宋亮, 化存卿, 等. 海上通信技术发展与研究综述[J]. 电信科学, 2022,38(5):1-17. DOI: 10.11959/j.issn.1000-0801.2022087.
Hao DONG, Liang SONG, Cunqing HUA, et al. Survey of the research and development on the maritime communication technology[J]. Telecommunications science, 2022, 38(5): 1-17. DOI: 10.11959/j.issn.1000-0801.2022087.
随着海上活动日益频繁,海上通信技术的发展有着重要的战略地位。但海上环境复杂多变、通信系统标准不统一等因素导致海上通信发展明显滞后。首先,根据通信方式的不同,将海上通信分为基于空域、陆地、海域和跨域协同 4 个主要组成部分,从工业界和学术界两个方向概述了全球范围内海上通信的发展进程和研究现状;然后,针对不同系统之间的联系和区别,分析了目前海上通信存在的主要问题;最后,具体阐述了新一代海上通信系统发展所面临的技术挑战,包括海浪运动模型学习、海上信道建模、大气波导效应和微波散射效应。
With the increasing frequency of maritime activities
the development of the maritime communication technology plays an important role.However
due to the complex and changeable maritime environment and the inconsistent communication system standards
the development of maritime communications has significantly lagged.Firstly
maritime communications were divided into four main components
including airspace
land
sea
and crossdomain coordination
according to the difference in communication methods.Then
the development process and research status on a global scale were summarized from the industrial and academic perspectives.Moreover
the main problems existing in the maritime communication were analyzed based on the connections and differences between the different systems.Finally
the technical challenges in the new generation of maritime communication systems were specifically elaborated
including the study of wave motion models learning
maritime channel modeling
atmospheric duct effects
and microwave scattering effects.
WEI T , FENG W , CHEN Y F , et al . Hybrid satellite-terrestrial communication networks for the maritime Internet of things:key technologies,opportunities,and challenges [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 11 ): 8910 - 8934 .
WANG H , OSEN O L , LI G Y , et al . Big data and industrial Internet of things for the maritime industry in Northwestern Norway [C ] // Proceedings of TENCON 2015 - 2015 IEEE Region 10 Conference . Piscataway:IEEE Press , 2015 : 1 - 5 .
YAU K L A , SYED A R , HASHIM W , et al . Maritime networking:bringing Internet to the sea [J ] . IEEE Access , 2019 ( 7 ): 48236 - 48255 .
JO S W , SHIM W S . LTE-maritime:high-speed maritime wireless communication based on LTE technology [J ] . IEEE Access , 2019 ( 7 ): 53172 - 53181 .
姜胜明 . 海洋互联网的战略战术与挑战 [J ] . 电信科学 , 2018 , 34 ( 6 ): 2 - 8 .
JIANG S M . Marine Internet:strategies,tactics and chal-lenges [J ] . Telecommunications Science , 2018 , 34 ( 6 ): 2 - 8 .
夏明华 , 朱又敏 , 陈二虎 , 等 . 海洋通信的发展现状与时代挑战 [J ] . 中国科学:信息科学 , 2017 , 47 ( 6 ): 677 - 695 .
XIA M H , ZHU Y M , CHEN E H , et al . The state of the art and challenges of marine communications [J ] . Scientia Sinica (In-formationis) , 2017 , 47 ( 6 ): 677 - 695 .
BEKKADAL F , NIELSENS O . Innovative maritime communications technologies [J ] . IEEE , 2010 : 1 - 6 .
AOYAGI T , SUZAKI K , SUZUKI Y , et al . Wave propagation simulations for considering the installation of the maritime mobile satellite communication antennas [C ] // Proceedings of 2012 Asia Pacific Microwave Conference Proceedings . Piscataway:IEEE Press , 2012 : 346 - 348 .
LEE S , LEE J W . An implementation of NAVTEX application on android mobile device [C ] // Proceedings of 2013 International Conference on Information Science and Applications (ICISA) . Piscataway:IEEE Press , 2013 : 1 - 3 .
China Daily . Telecoms extend 4G service to Nansha Islands [R ] . 2016 .
FALCIASECCA G , VALOTTI B . Guglielmo Marconi:the pioneer of wireless communications [C ] // Proceedings of 2009 European Microwave Conference (EuMC) . Piscataway:IEEE Press , 2009 : 544 - 546 .
TEIXEIRA F B , OLIVEIRA T , LOPES M , et al . Tethered balloons and TV white spaces:a solution for real-time marine data transfer at remote ocean areas [C ] // Proceedings of 2016 IEEE Third Underwater Communications and Networking Conference . Piscataway:IEEE Press , 2016 : 1 - 5 .
MCDOWELL J C . The low earth orbit satellite population and impacts of the SpaceX starlink constellation [J ] . The Astrophysical Journal Letters , 2020 , 892 ( 2 ): L36 .
ESA , Space Hellas (Prime Contractor) . CloudSat (scenarios for integration of satellite components in future networks) [R ] . 2017 .
ESA , Avanti (Prime Contractor) . SPECSI (Strategic Positioning of the European and Canadian Satcom Industry) [R ] . 2017 .
WANG J L , LIU C S . Development and application of INMARSAT satellite communication system [C ] // Proceedings of 2011 First International Conference on Instrumentation,Measurement,Computer,Communication and Control . Piscataway:IEEE Press , 2011 : 619 - 621 .
SPIRIDONOV V V , . Inmarsat systems and services [C ] // Proceedings of International Conference on Satellite Communications,ICSC’94 . Piscataway:IEEE Press , 1994 : 45 - 52 .
BANKS D K , GAMBARUTO E , KRINSKY B . The inmarsat second generation communications payload [C ] // Proceedings of 1989 19th European Microwave Conference . Piscataway:IEEE Press , 1989 : 781 - 788 .
KINAL G V , NAGLE J , LIPKE D W . INMARSAT integrity channels for global navigation satellite systems [J ] . IEEE Aerospace and Electronic Systems Magazine , 1992 , 7 ( 8 ): 22 - 25 .
FRANCHI A , HOWELL A , SENGUPTA J . Broadband mobile via satellite:Inmarsat BGAN [C ] // Proceedings of IEE Seminar on Broadband Satellite:The Critical Success Factors - Technology,Services and Markets (Ref.No.2000/067).IET2000:23/1-23/7. .
HADINGER P , . Inmarsat global Xpress the design,implementation,and activation of a global ka-band network [C ] // Proceedings of 33rd AIAA International Communications Satellite Systems Conference and Exhibition . Reston,Virginia:AIAA , 2015 : 1 - 8 .
WEI F Y , CHEN B D , JIA R , et al . Research on maritime leapfrog emergency communication coverage technology based on satellite relay [J ] . Journal of Physics:Conference Series 2018 ,1087:042064.
YE L , WANG Y F . Marine navigation services based on COMPASS(Beidou) and GPS [C ] // Proceedings of 2012 Ubiquitous Positioning,Indoor Navigation,and Location Based Service (UPINLBS) . Piscataway:IEEE Press , 2012 : 1 - 7 .
SEKIGUCHI K , . Iridium contributes to “maritime safety” [C ] // Proceedings of 2016 Techno-Ocean (Techno-Ocean) . Piscataway:IEEE Press , 2016 : 90 - 92 .
陈晨 , 谢珊珊 , 张潇潇 , 等 . 聚合 SDN 控制的新一代空天地一体化网络架构 [J ] . 中国电子科学研究院学报 , 2015 , 10 ( 5 ): 450 - 454 , 459 .
CHEN C , XIE S S , ZHANG X X , et al . A new space and terrestrial integrated network architecture aggregated SDN [J ] . Journal of China Academy of Electronics and Information Technology , 2015 , 10 ( 5 ): 450 - 454 , 459 .
STASOLLA M , MALLORQUI J J , MARGARIT G , et al . A comparative study of operational vessel detectors for maritime sur-veillance using satellite-borne synthetic aperture radar [J ] . Topics Applied Earth Observations & Remote Sensing , 2016 , 9 ( 6 ): 2687 - 2701 .
FLOCCHINI P , MANS B , SANTORO N . On the exploration of time-varying networks [J ] . Theoretical Computer Science , 2013 ( 469 ): 53 - 68 .
IACOPINO C , PALMER P , BREWER A , et al . EO constellation MPS based on ant colony optimization algorithms [C ] // Proceedings of 2013 6th International Conference on Recent Advances in Space Technologies (RAST) . Piscataway:IEEE Press , 2013 : 159 - 164 .
XIAO A L , GE N , YIN L G , et al . A voyage-based cooperative resource allocation scheme in maritime broadband access network [C ] // Proceedings of 2017 IEEE 86th Vehicular Technology Conference . Piscataway:IEEE Press , 2017 : 1 - 5 .
SADEGHI M , BEHNIA F , AMIRI R . Maritime target localization from bistatic range measurements in space-based passive radar [J ] . IEEE Transactions on Instrumentation and Measurement , 2021 ( 70 ): 1 - 8 .
RAZAK M Y A , ZAINAL N , SIDEK A R M . Performance of 8FSK base on PACTOR I protocol over AWGN channels [C ] // Proceedings of 2018 5th International Conference on Information Technology,Computer,and Electrical Engineering (ICITACEE) . Piscataway:IEEE Press , 2018 : 1 - 5 .
VALČIĆ S , MRAK Z , KEZIĆ D . Comparison of new technologies for data exchange in the maritime HF frequency band [C ] // Proceedings of 2013 36th International Convention on Information and Communication Technology,Electronics and Microelectronics (MIPRO) . Piscataway:IEEE Press , 2013 : 498 - 502 .
CHANG S J , . Development and analysis of AIS applications as an efficient tool for vessel traffic service [C ] // Proceedings of Oceans '04 MTS/IEEE Techno-Ocean '04 . Piscataway:IEEE Press , 2004 : 2249 - 2253 .
North Sea . Worlds first offshore LTE network [R ] . 2013 .
HOEFT M , GIERLOWSKI K , RAK J , et al . Non-satellite broadband maritime communications for e-navigation services [J ] . IEEE Access , 2021 ( 9 ): 62697 - 62718 .
JI Y C , ZHANG X , ZHANG G A , et al . Use of NOMA for maritime communication networks with P-DF relaying channel [J ] . China Communications , 2020 , 17 ( 7 ): 236 - 246 .
贾蒙 , 巩峰 , 陈为刚 . 无线传感器网络不可靠链路特性 [J ] . 信息与控制 , 2020 , 49 ( 5 ): 552 - 559 .
JIA M , GONG F , CHEN W G . Unreliable link characteristics of wireless sensor network [J ] . Information and Control , 2020 , 49 ( 5 ): 552 - 559 .
MEHRNIA N , OZDEMIR M K . Novel maritime channel models for millimeter radiowaves [C ] // Proceedings of 2016 24th International Conference on Software,Telecommunications and Computer Networks (SoftCOM) . Piscataway:IEEE Press , 2016 : 1 - 6 .
LEE Y H , MENG Y S . Near sea-surface mobile radiowave propagation at 5 GHz:measurements and modeling [J ] . Radioengineering , 2014 , 23 ( 3 ): 824 - 830 .
XU Y L . Quality of service provisions for maritime communications based on cellular networks [J ] . IEEE Access , 2017 ( 5 ): 23881 - 23890 .
XU Y L , JIANG S M , LIU F . A LTE-based communication architecture for coastal networks [C ] // Proceedings of the 11th ACM International Conference on Underwater Networks &Systems - WUWNet & apos;16 . New York:ACM Press , 2016 .
LIU C X , FENG W , WEI T , et al . Fairness-oriented hybrid precoding for massive MIMO maritime downlink systems with large-scale CSIT [J ] . China Communications , 2018 , 15 ( 1 ): 52 - 61 .
YOSHIKAWA T , KAWASAKI S , TAKASE M , et al . Development of 27 MHz/40 MHz bands maritime wireless ad-hoc networks [C ] // 2010 Second International Conference on Ubiquitous and Future Networks (ICUFN) . Piscataway:IEEE Press , 2010 : 177 - 182 .
ZHOU M T , HOANG V D , HARADA H , et al . TRITON:high-speed maritime wireless mesh network [J ] . IEEE Wireless Communications , 2013 , 20 ( 5 ): 134 - 142 .
LIU R W , NIE J T , GARG S , et al . Data-driven trajectory quality improvement for promoting intelligent vessel traffic services in 6G-enabled maritime IoT systems [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 7 ): 5374 - 5385 .
LAARHUIS J H , . MaritimeManet:Mobile ad-hoc networking at sea [C ] // 2010 International WaterSide Security Conference . Piscataway:IEEE Press , 2010 : 1 - 6 .
ZAIDI K S , JEOTI V , AWANG A , et al . High reliability using virtual MIMO based mesh network for maritime wireless communication [C ] // 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS) . Piscataway:IEEE Press , 2016 : 1 - 5 .
KONG P Y , WANG H G , GE Y , et al . Distributed adaptive time slot allocation for WiMAX based maritime wireless mesh networks [C ] // Proceedings of 2009 IEEE Wireless Communications and Networking Conference . Piscataway:IEEE Press , 2009 : 1 - 6 .
ZHOU M T , HARADA H . Cognitive maritime wireless mesh/ad hoc networks [J ] . Journal of Network and Computer Applications , 2012 , 35 ( 2 ): 518 - 526 .
RAMANATHAN R , HANSEN R , BASU P , et al . Prioritized epidemic routing for opportunistic networks [C ] // Proceedings of the 1st International MobiSys Workshop on Mobile Opportunistic Networking . New York:ACM Press , 2007 : 62 - 66 .
LINDGREN A , DORIA A , SCHELÉN O . Probabilistic routing in intermittently connected networks [J ] . ACM SIGMOBILE Mobile Computing and Communications Review , 2003 , 7 ( 3 ): 19 - 20 .
LIAO Y , TAN K , ZHANG Z S , et al . Estimation based erasure-coding routing in delay tolerant networks [C ] // Proceeding of the 2006 International Conference on Communications and Mobile Computing - IWCMC '06 . New York:ACM Press , 2006 .
DHIVVYA J P , RAO S N , SIMI S . Towards maximizing throughput and coverage of a novel heterogeneous maritime communication network [C ] // Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing . New York:ACM Press , 2017 .
LIU Y X , ZHAO M , XIAO L M , et al . Pilot domain NOMA for grant-free massive random access in massive MIMO marine communication system [J ] . China Communications , 2020 , 17 ( 6 ): 131 - 144 .
张颖 , 姚雨丰 . 基于快速贝叶斯匹配追踪优化的海上稀疏信道估计方法 [J ] . 电子与信息学报 , 2020 , 42 ( 2 ): 534 - 540 .
ZHANG Y , YAO Y F . Channel estimation algorithm of maritime sparse channel based on fast Bayesian matching pursuit optimi-zation [J ] . Journal of Electronics & Information Technology , 2020 , 42 ( 2 ): 534 - 540 .
HUO Y M , DONG X D , BEATTY S . Cellular communications in ocean waves for maritime Internet of things [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 10 ): 9965 - 9979 .
BEST M L . The internet that Facebook built [J ] . Communications of the ACM , 2014 , 57 ( 12 ): 21 - 23 .
ENGEL M . Google's project loon hovers over the satellite industry [J ] . Via Satellite , 2013 , 28 ( 8 ): 13 .
FERREIRA H , SILVA F , SOUSA P , et al . Autonomous systems in remote areas of the ocean using BLUECOM+ communication network [C ] // Proceedings of OCEANS 2017 - Anchorage . Piscataway:IEEE Press , 2017 : 1 - 6 .
TANG R , FENG W , CHEN Y F , et al . NOMA-based UAV communications for maritime coverage enhancement [J ] . China Communications , 2021 , 18 ( 4 ): 230 - 243 .
YANG T T , CHEN J C , ZHANG N . AI-empowered maritime Internet of things:a parallel-network-driven approach [J ] . IEEE Network , 2020 , 34 ( 5 ): 54 - 59 .
XIA T T , WANG M M , ZHANG J J , et al . Maritime Internet of things:challenges and solutions [J ] . IEEE Wireless Communications , 2020 , 27 ( 2 ): 188 - 196 .
WANG M M , ZHANG J J , YOU X H . Machine-type communication for maritime Internet of things:a design [J ] . IEEE Communications Surveys & Tutorials , 2020 , 22 ( 4 ): 2550 - 2585 .
YANG T T , KONG L Z , ZHAO N , et al . Efficient energy and delay tradeoff for vessel communications in SDN based maritime wireless networks [J ] . IEEE Transactions on Intelligent Transportation Systems , 2021 , 22 ( 6 ): 3800 - 3812 .
GUAN S H , WANG J J , JIANG C X , et al . MagicNet:the maritime giant cellular network [J ] . IEEE Communications Magazine , 2021 , 59 ( 3 ): 117 - 123 .
WAKABAYASHI N , JURDANA I . Maritime communications and remote voyage monitoring [C ] // Proceedings of 2020 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom) . Piscataway:IEEE Press , 2020 : 1 - 8 .
JOHN O , REIMANN M . Increasing quality of maritime communication through intelligent speech recognition and radio direction finding [C ] // Proceedings of 2020 European Navigation Conference (ENC) . Piscataway:IEEE Press , 2020 : 1 - 7 .
SHI Y , ZHENG L M , LIN W C , et al . Spatial-modulated physical-layer network coding based on block Markov superposition transmission for maritime relay communications [J ] . China Communications , 2020 , 17 ( 3 ): 26 - 35 .
LI X L , FENG W , CHEN Y F , et al . Maritime coverage enhancement using UAVs coordinated with hybrid satellite-terrestrial networks [J ] . IEEE Transactions on Communications , 2020 , 68 ( 4 ): 2355 - 2369 .
LI X L , FENG W , WANG J , et al . Enabling 5G on the ocean:a hybrid satellite-UAV-terrestrial network solution [J ] . IEEE Wireless Communications , 2020 , 27 ( 6 ): 116 - 121 .
ZHANG J , LIANG F Z , LI B , et al . Placement optimization of caching UAV-assisted mobile relay maritime communication [J ] . China Communications , 2020 , 17 ( 8 ): 209 - 219 .
FU Y Z , JIANG C A , YIN L G . Satellite multicast transmission scheme in integrated satellite-maritime networks [C ] // Proceedings of 2020 International Wireless Communications and Mobile Computing (IWCMC) . Piscataway:IEEE Press , 2020 : 988 - 993 .
WEI T , FENG W , GE N , et al . Environment-aware coverage optimization for space-ground integrated maritime communications [J ] . IEEE Access , 2020 ( 8 ): 89205 - 89214 .
WANG Y M , FANG X R , FENG W , et al . On-demand coverage for maritime hybrid satellite-UAV-terrestrial networks [C ] // Proceedings of 2020 International Conference on Wireless Communications and Signal Processing (WCSP) . Piscataway:IEEE Press , 2020 : 483 - 488 .
FANG X , FENG W , WANG Y , et al . NOMA-based hybrid satellite-UAV-terrestrial networks for beyond 5G maritime Internet of things [J ] . preprint arXiv , 2021 :2104.03755.
WANG Y M , FENG W , WANG J , et al . Hybrid satellite-UAV-terrestrial networks for 6G ubiquitous coverage:a maritime communications perspective [J ] . IEEE Journal on Selected Areas in Communications , 2021 , 39 ( 11 ): 3475 - 3490 .
XU F M , YANG F , ZHAO C L , et al . Deep reinforcement learning based joint edge resource management in maritime network [J ] . China Communications , 2020 , 17 ( 5 ): 211 - 222 .
PANG Y , WANG D S , WANG D D , et al . A space-air-ground integrated network assisted maritime communication network based on mobile edge computing [C ] // Proceedings of 2020 IEEE World Congress on Services . Piscataway:IEEE Press , 2020 : 269 - 274 .
SAAD W , BENNIS M , CHEN M Z . A vision of 6G wireless systems:applications,trends,technologies,and open research problems [J ] . IEEE Network , 2020 , 34 ( 3 ): 134 - 142 .
KODHELI O , LAGUNAS E , MATURO N , et al . Satellite communications in the new space era:a survey and future challenges [J ] . IEEE Communications Surveys & Tutorials , 2020 , 23 ( 1 ): 70 - 109 .
WANG J , ZHOU H F , LI Y , et al . Wireless channel models for maritime communications [J ] . IEEE Access , 2018 ( 6 ): 68070 - 68088 .
WANG J , JIN S , GAO X Q , et al . Statistical eigenmode-based SDMA for two-user downlink [J ] . IEEE Transactions on Signal Processing , 2012 , 60 ( 10 ): 5371 - 5383 .
LIU C X , FENG W , WEI T , et al . Fairness-oriented hybrid precoding for massive MIMO maritime downlink systems with large-scale CSIT [J ] . China Communications , 2018 , 15 ( 1 ): 52 - 61 .
LI Y , WANG J , ZHANG S B , et al . Efficient coastal communications with sparse network coding [J ] . IEEE Network , 2018 , 32 ( 4 ): 122 - 128 .
WANG Q , BURKHOLDER R J , YARDIM C , et al . Estimation of evaporation duct and surface-based duct parameters from a combined refractivity model [C ] // Proceedings of 2018 IEEE International Symposium on Antennas and Propagation &USNC/URSI National Radio Science Meeting . Piscataway:IEEE Press , 2018 : 879 - 880 .
ZOLICH A , PALMA D , KANSANEN K , et al . Survey on communication and networks for autonomous marine systems [J ] . Journal of Intelligent & Robotic Systems , 2019 , 95 ( 3/4 ): 789 - 813 .
KABACIK P , BYNDAS A , FRACZEK W , et al . Over-the-horizon broadband maritime communications utilizing novel lightweight antennas [C ] // OCEANS 2017-Aberdeen . IEEE , 2017 : 1 - 5 .
BEN MABROUK I , REYES-GUERRERO J C , NEDIL M . Radio-channel characterization of an over-sea communication [C ] // Proceedings of 2015 9th European Conference on Antennas and Propagation (EuCAP) . Piscataway:IEEE Press , 2015 : 1 - 4 .
0
浏览量
803
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构