浏览全部资源
扫码关注微信
1. 河南理工大学计算机科学与技术学院,河南 焦作 454003
2. 嘉兴学院信息科学与工程学院,浙江 嘉兴 314000
3. 嘉兴学院数据科学学院,浙江 嘉兴 314000
[ "高岩(1963-),男,博士,河南理工大学计算机科学与技术学院教授,主要研究方向为智能信息处理与智能控制等" ]
[ "石坚(1996- ),男,河南理工大学硕士生,主要研究方向为深度学习与智能通信" ]
[ "马圣雨(1997- ),女,河南理工大学硕士生,主要研究方向为深度学习与智能通信" ]
[ "马柏林(1961- ),男,博士,嘉兴学院数据科学学院教授,主要研究方向为调和分析和小波分析、智能计算" ]
[ "乐光学(1963- ),男,博士,嘉兴学院信息科学与工程学院教授,主要研究方向为多云融合与协同服务、边缘计算与一体化通信网络、深度学习与智能通信" ]
网络出版日期:2022-05,
纸质出版日期:2022-05-20
移动端阅览
高岩, 石坚, 马圣雨, 等. 基于DropBlock双模态混合神经网络的无线通信调制识别[J]. 电信科学, 2022,38(5):75-86.
Yan GAO, Jian SHI, Shengyu MA, et al. DropBlock based bimodal hybrid neural network for wireless communication modulation recognition[J]. Telecommunications science, 2022, 38(5): 75-86.
高岩, 石坚, 马圣雨, 等. 基于DropBlock双模态混合神经网络的无线通信调制识别[J]. 电信科学, 2022,38(5):75-86. DOI: 10.11959/j.issn.1000-0801.2022099.
Yan GAO, Jian SHI, Shengyu MA, et al. DropBlock based bimodal hybrid neural network for wireless communication modulation recognition[J]. Telecommunications science, 2022, 38(5): 75-86. DOI: 10.11959/j.issn.1000-0801.2022099.
自动调制识别作为信号检测和解调的中间步骤,在无线通信系统中起着至关重要的作用。针对现有自动调制识别方法识别精度低的问题,提出了一种双模态混合神经网络(bimodal hybrid neural network, BHNN),该网络利用多个模态中包含的互补增益信息来丰富特征维度。将改进的残差网络与双向门控循环单元并行连接,构建双模态混合神经网络模型,分别提取信号的空间特征与时序特征。引入DropBlock正则化算法,有效抑制网络训练过程中过拟合、梯度消失和梯度爆炸等对识别精度的影响。以双模态数据输入,充分利用信号的空间与时序特征,通过并行连接减少网络深度,加速模型收敛,提高调制信号的识别精度。为验证模型的有效性,采用两种公开数据集对模型进行仿真实验,结果表明,BHNN在两种数据集上识别精度高、稳定性强,在高信噪比下识别精度分别可达89%和93.63%。
As an intermediate step of signal detection and demodulation
automatic modulation recognition played a momentous role in wireless communication system.Aiming at the low recognition accuracy of existing automatic modulation recognition methods
a bimodal hybrid neural network (BHNN) was proposed
which utilized complementary gain information contained in multiple modes to enrich feature dimensions.The improved residual network was connected in parallel with the bidirectional gated loop unit to construct a bimodal hybrid neural network model
and the spatial and temporal features of the signal were extracted respectively.The DropBlock regularization algorithm was introduced to effectively suppress the influence of over fitting
gradient disappearance and gradient explosion on the recognition accuracy in the process of network training.Using bimodal data input
the spatial and temporal characteristics of signals were fully utilized
and the network depth was reduced through parallel connection.The model convergence was accelerated
and the recognition accuracy of modulated signals was improved.In order to verify the effectiveness of the model
two public datasets were used to simulate the model.The results show that BHNN has high recognition accuracy and strong stability on the two datasets
and the recognition accuracy can reach 89% and 93.63% respectively under high signal-to-noise ratio.
WOUTERS J , PATRINOS P , KLOOSTERMAN F , et al . Multi-pattern recognition through maximization of signal-to-peak-interference ratio with application to neural spike sorting [J ] . IEEE Transactions on Signal Processing , 2020 ( 68 ): 6240 - 6254 .
LIU F , ZHOU Y , LIU Y A . A deep neural network method for automatic modulation recognition in OFDM with index modulation [C ] // Proceedings of 2019 IEEE 89th Vehicular Technology Conference . Piscataway:IEEE Press , 2019 : 1 - 5 .
WANG Y , LIU M , YANG J , et al . Data-driven deep learning for automatic modulation recognition in cognitive radios [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 4 ): 4074 - 4077 .
TUNZE G B , HUYNH-THE T , LEE J M , et al . Sparsely connected CNN for efficient automatic modulation recognition [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 12 ): 15557 - 15568 .
LIN C , YAN W J , ZHANG L M , et al . A real-time modulation recognition system based on software-defined radio and multi-skip residual neural network [J ] . IEEE Access , 2020 ( 8 ): 221235 - 221245 .
CHEN S Y , ZHANG Y , HE Z W , et al . A novel attention cooperative framework for automatic modulation recognition [J ] . IEEE Access , 2020 ( 8 ): 15673 - 15686 .
PIJACKOVA K , GOTTHANS T . Radio modulation classification using deep learning architectures [C ] // Proceedings of 2021 31st International Conference Radioelektronika (RADIOELEKTRONIKA) . Piscataway:IEEE Press , 2021 : 1 - 5 .
ZHAO X D , ZHOU X H , XIONG J , et al . Automatic modulation recognition based on multi-dimensional feature extraction [C ] // Proceedings of 2020 International Conference on Wireless Communications and Signal Processing (WCSP) . Piscataway:IEEE Press , 2020 : 823 - 828 .
赵雄文 , 郭春霞 , 李景春 . 基于高阶累积量和循环谱的信号调制方式混合识别算法 [J ] . 电子与信息学报 , 2016 , 38 ( 3 ): 674 - 680 .
ZHAO X W , GUO C X , LI J C . Mixed recognition algorithm for signal modulation schemes by high-order cumulants and cyclic spectrum [J ] . Journal of Electronics & Information Technology , 2016 , 38 ( 3 ): 674 - 680 .
孙姝君 , 彭盛亮 , 姚育东 , 等 . 基于深度学习的调制识别综述 [J ] . 电信科学 , 2021 , 37 ( 5 ): 82 - 90 .
SUN S J , PENG S L , YAO Y D , et al . A survey of deep learning based modulation recognition [J ] . Telecommunications Science , 2021 , 37 ( 5 ): 82 - 90 .
O’SHEA T J , CORGAN J , CLANCY T C . Convolutional radio modulation recognition networks [M ] // Engineering Applications of Neural Networks . Cham : Springer International Publishing , 2016 : 213 - 226 .
O’SHEA T J , ROY T , CLANCY T C . Over-the-air deep learning based radio signal classification [J ] . IEEE Journal of Selected Topics in Signal Processing , 2018 , 12 ( 1 ): 168 - 179 .
GHIASI G , LIN T Y , QUOC V . DropBlock:a regularization method for convolutional networks [C ] // Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS'18) . New York:ACM Press , 2018 : 10750 - 10760 .
O’SHEA T J , WEST N . Radio machine learning dataset generation with gnu radio [C ] // Proceedings of the GNU Radio Conference . 2016 : 1 - 6 .
CHO K , MERRIENBOER B V , GULCEHRE C , et al . Learning phrase representations using RNN encoder-decoder for statistical machine translation [J ] . Computer Science,arXiv:1406.1078v3 , 2014 .
QI P H , ZHOU X Y , ZHENG S L , et al . Automatic modulation classification based on deep residual networks with multimodal information [J ] . IEEE Transactions on Cognitive Communications and Networking , 2021 , 7 ( 1 ): 21 - 33 .
RAMJEE S , JU S , YANG D , et al . Fast deep learning for automatic modulation classification [J ] . arXiv:1901.05850 , 2019 .
YANG H G , ZHAO L Z , YUE G X , et al . IRLNet:a short-time and robust architecture for automatic modulation recognition [J ] . IEEE Access , 2021 , 9 ( 10 ): 143661 - 143676 .
SRIVASTAVA N , HINTON G , KRIZHEVSKY A , et al . Dropout:a simple way to prevent neural networks from overfitting [J ] . Journal of Machine Learning Research , 2014 , 15 ( 1 ): 1929 - 1958 .
TOMPSON J , GOROSHIN R , JAIN A , et al . Efficient object localization using Convolutional Networks [C ] // Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2015 : 648 - 656 .
LU M , PENG T J , YUE G X , et al . Dual-channel hybrid neural network for modulation recognition [J ] . IEEE Access , 2021 ( 9 ): 76260 - 76269 .
0
浏览量
310
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构