浏览全部资源
扫码关注微信
1. 鹏城实验室先进承载网络技术研究所,广东 深圳 518055
2. 上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240
3. 墨尔本大学电气与电子工程系,澳大利亚 墨尔本 3010
[ "计红林(1990- ),男,博士,鹏城实验室助理研究员,主要研究方向为大容量相干光传输系统、未来先进光网络系统架构、硅光芯片集成、移动前传和光纤传感等" ]
[ "李雪阳(1991- ),男,博士,鹏城实验室助理研究员,主要研究方向为高速短距光互连系统架构、信号处理算法、光芯片以及光无线通信等" ]
[ "贺志学(1983- ),男,博士,鹏城实验室研究员,主要研究方向为高速长距离光传输技术等" ]
[ "胡卫生(1964- ),男,博士,鹏城实验室研究员,上海交通大学教授,主要研究方向为全光通信网与光交换、高速光接入与移动前传等" ]
[ "William Shieh(1967— ),男,博士,墨尔本大学教授,主要研究方向为光通信和传感的少模光纤以及高级调制格式等" ]
网络出版日期:2022-07,
纸质出版日期:2022-07-20
移动端阅览
计红林, 李雪阳, 贺志学, 等. 新型光接收系统架构:应用于超大容量低成本的短距光互连[J]. 电信科学, 2022,38(7):43-56.
Honglin JI, Xueyang LI, Zhixue HE, et al. Advanced optical receiver architectures for ultra-high capacity but low-cost short-reach optical interconnects[J]. Telecommunications science, 2022, 38(7): 43-56.
计红林, 李雪阳, 贺志学, 等. 新型光接收系统架构:应用于超大容量低成本的短距光互连[J]. 电信科学, 2022,38(7):43-56. DOI: 10.11959/j.issn.1000-0801.2022159.
Honglin JI, Xueyang LI, Zhixue HE, et al. Advanced optical receiver architectures for ultra-high capacity but low-cost short-reach optical interconnects[J]. Telecommunications science, 2022, 38(7): 43-56. DOI: 10.11959/j.issn.1000-0801.2022159.
大规模数据中心等新兴网络基础设施的部署急需超大容量低成本的短距光互连系统。传统的直调直检系统拥有简单的接收机结构,但只能检测信号的强度信息,这限制了其系统容量的进一步扩展。经典的相干传输系统能够调制解调高阶信号进而实现大容量传输,但收/发端都需要昂贵的窄线宽激光器和高复杂度的数字信号处理,这阻碍了其在短距光互连中的广泛应用。新型的直接检测光接收系统旨在结合直接检测和相干检测两者的优点,弥补二者之间的研究空白。因此,新型的光接收系统架构主要基于自相干检测。介绍了新型单偏振、双偏振、少模光接收系统架构。该类新型的光接收系统不需要本振激光器且能通过直接检测恢复光场信号,实现超大容量低成本的短距光互连。
The deployment of emerging network infrastructure such as hyper-scale datacenters urgently requires ultra-high capacity but low-cost short-reach optical interconnects.Conventional intensity modulation and direct detection possesses a simple receiver structure but can only recover the intensity information
which restrains the capability of further scaling up the system capacity.Standard coherent detection can deliver high-order modulation formats and achieve high-capacity transmission.Nevertheless
the coherent transceiver requiring expensive narrow-linewidth laser sources and computation-intensive digital signal processing precludes its wide applications in short-reach systems.The advanced direct-detection optical receivers aim to combine the advantages of both direct detection and coherent detection and bridge the gap between them.Therefore
the advanced optical receivers are mainly based on self-coherent detection.Advanced single-polarization
dual-polarization
and few-mode optical receiver architectures wereintroduced.The proposed advanced optical receivers can retrieve the optical field via direct detection without using the narrow-linewidth lasers
which enables the realization of ultra-high capability but low-cost short-reach optical interconnects.
工业和信息化部印发《新型数据中心发展三年行动计划(2021—2023年)》 [EB ] . 2021 .
The Ministry of Industry and Information Technology of China"Three-year action plan for the development of new data centers (2021-2023)" [EB ] . 2021 .
Cisco annual internet report (2018-2023) white paper [EB ] . 2018 .
2018 ethernet roadmap. [EB ] . 2018 .
YAMANAKA S , IKUMA Y , ITOH T , et al . Photonics coherent optical subassembly with eo and oe bandwidths of over 50 GHz [C ] // Optical Fiber Communication Conference 2020 .[S.l.:s.n. ] , 2020 .
DOERR C , CHEN L , VERMEULEN D , et al . Single-chip silicon photonics 100-Gbit/s coherent transceiver [C ] // Optical Fiber Communication Conference 2014 .[S.l.:s.n. ] , 2014 .
SEILER P M , VOIGT K , PECZEK A , et al . Multiband silicon photonic ePIC coherent receiver for 64 GBd QPSK [J ] . Journal of Lightwave Technology , 2022 , 40 ( 10 ): 3331 - 3337 .
CHE D , LI A , CHEN X , et al . Stokes vector direct detection for short-reach optical communication [J ] . Optics Letters , 2014 , 39 ( 11 ): 3110 - 3113 .
CHEN X , CHE D , LI A , et al . Signal-carrier interleaved optical OFDM for direct detection optical communication [J ] . Optics Express , 2013 , 21 ( 26 ): 32501 .
CHEN X , LI A , CHE D , et al . Block-wise phase switching for double-sideband direct detected optical OFDM signals [J ] . Optics Express , 2013 , 21 ( 11 ): 13436 - 13441 .
MECOZZI A , ANTONELLI C , SHTAIF M . Kramers–Kronig coherent receiver [J ] . Optica , 2016 , 3 ( 11 ): 1220 .
SHIEH W , SUN C , JI H L . Carrier-assisted differential detection [J ] . Light:Science & Applications , 2020 , 9 : 18 .
JI H L , SUN M , SUN C , et al . Carrier assisted differential detection with a generalized transfer function [J ] . Optics Express , 2020 , 28 ( 24 ): 35946 .
JI H L , SUN C , UNNITHAN R R , et al . Generalized carrier assisted differential detection with simplified receiver structure [C ] // Proceedings of 2021 Optical Fiber Communications Conference and Exhibition (OFC) . Piscataway:IEEE Press , 2021 : 1 - 3 .
SUN C , JI T H , JI H L , et al . Experimental demonstration of complex-valued DSB signal field recovery via direct detection [J ] . IEEE Photonics Technology Letters , 2020 , 32 ( 10 ): 585 - 588 .
JI T H , SUN C , JI H L , et al . Theoretical and experimental investigations of interleaved carrier-assisted differential detection [J ] . Journal of Lightwave Technology , 2021 , 39 ( 1 ): 122 - 128 .
ZHU Y X , LI L S , FU Y , et al . Symmetric carrier assisted differential detection receiver with low-complexity signal-signal beating interference mitigation [J ] . Optics Express , 2020 , 28 ( 13 ): 19008 .
LI J C , WANG Z , JI H L , et al . High electrical spectral efficiency silicon photonic receiver with carrier-assisted differential detection [C ] // Proceedings of Optical Fiber Communication Conference (OFC) 2022 . Washington,D.C.:Optica Publishing Group , 2022 .
LI J C , AN S H , JI H L , et al . Carrier-assisted differential detection with reduced guard band and high electrical spectral efficiency [J ] . Optics Express , 2021 , 29 ( 21 ): 33502 - 33511 .
JI H L , DONG S Y , XU Z P , et al . Carrier assisted differential detection with generalized and simplified receiver structure [J ] . Journal of Lightwave Technology , 2021 , 39 ( 22 ): 7159 - 7167 .
LI X Y , O’SULLIVAN M , XING Z P , et al . Asymmetric self-coherent detection [J ] . Optics Express , 2021 , 29 ( 16 ): 25412 .
LI X Y , ZHU M Y , XING Z P , et al . Asymmetric direct detection of twin-SSB signals [J ] . Optics Letters , 2020 , 45 ( 4 ): 844 .
Asymmetric direct detection of optical signal [P ] . 2022 .
LI X Y , O'SULLIVAN M ,, XING Z P , et al . Asymmetric self-coherent detection based on Mach-Zehnder interferometers [J ] . Journal of Lightwave Technology , 2022 , 40 ( 7 ): 2023 - 2032 .
LIU W , LIAO J W , CAI H J , et al . High-speed silicon integrated polarization stabilizer assisted by a polarimeter [J ] . Journal of Lightwave Technology , 2022 , 40 ( 12 ): 3794 - 3801 .
MADSEN C K , OSWALD P , CAPPUZZO M , et al . Reset-free integrated polarization controller using phase shifters [J ] . IEEE Journal of Selected Topics in Quantum Electronics , 2005 , 11 ( 2 ): 431 - 438 .
HU Q , CHEN X , LI A , et al . High-dimensional stokes-space analysis for monitoring fast change of mode dispersion in few-mode fibers [C ] // Proceedings of Optical Fiber Communication Conference . Washington,D.C.:OSA , 2014 .
CHARLTON D , CLARKE S , DOUCET D , et al . Field measurements of SOP transients in OPGW,with time and location correlation to lightning strikes [J ] . Optics Express , 2017 , 25 ( 9 ): 9689 .
LIN Z J , LIN Y M , LI H , et al . High-performance polarization management devices based on thin-film lithium niobate [J ] . Light:Science & Applications , 2022 ( 11 ): 93 .
GUI T , WANG X F , TANG M , et al . Real-time demonstration of 600 Gbit/s DP-64QAM SelfHomodyne coherent Bi-direction transmission with un-cooled DFB laser [C ] // Proceedings of Optical Fiber Communication Conference Postdeadline Papers 2020 . Washington,D.C.:OSA , 2020 : 1 - 3 .
JI H L , ZHOU X , SUN C , et al . Polarization-diversity receiver using remotely delivered local oscillator without optical polarization control [J ] . Optics Express , 2020 , 28 ( 15 ): 22882 - 22890 .
JI H L , WANG Z , LI X F , et al . Silicon photonics 630-Gbit/s complementary polarization-diversity coherent receiver with 9-Mrad/s polarization tracking speed for self-coherent homodyne detection [C ] // Proceedings of Optical Fiber Communication Conference (OFC) 2022 . Washington,D.C.:Optica Publishing Group , 2022 : 1 - 3 .
JI H L , LI J C , LI X F , et al . Complementary polarization-diversity coherent receiver for self-coherent homodyne detection with rapid polarization tracking [J ] . Journal of Lightwave Technology , 2022 , 40 ( 9 ): 2773 - 2779 .
JI H L , LI J C , LI X F , et al . Complementary polarization-diversity self-coherent homodyne receiver with rapid polarization tracking for remote LO [C ] // Proceedings of Optical Fiber Communication Conference (OFC) 2022 . Washington,D.C.:Optica Publishing Group , 2022 : 1 - 3 .
JI H L , LI J C , LI X F , et al . Beyond mrad/s polarization tracking speed of complementary polarization-diversity coherent receiver for remote LO [C ] // Proceedings of Optical Fiber Communication Conference (OFC) 2022 . Washington,D.C.:Optica Publishing Group , 2022 : 1 - 3 .
ANTONELLI C , MECOZZI A , SHTAIF M , et al . Polarization multiplexing with the Kramers-Kronig receiver [J ] . Journal of Lightwave Technology , 2017 , 35 ( 24 ): 5418 - 5424 .
JI H L , CHE D , SUN C , et al . High-dimensional Stokes vector direct detection over few-mode fibers [J ] . Optics Letters , 2019 , 44 ( 8 ): 2065 .
GORDON J P , KOGELNIK H . PMD fundamentals:polarization mode dispersion in optical fibers [J ] . PNAS , 2000 , 97 ( 9 ): 4541 - 4550 .
HU Q , CHEN X , LI A , et al . High-dimensional stokes-space analysis for monitoring fast change of mode dispersion in few-mode fibers [C ] // Proceedings of Optical Fiber Communication Conference . Washington,D.C.:OSA , 2014 : 1 - 3 .
HU Q , SHIEH W . Autocorrelation function of channel matrix in few-mode fibers with strong mode coupling [J ] . Optics Express , 2013 , 21 ( 19 ): 22153 - 22165 .
ANTONELLI C , MECOZZI A , SHTAIF M , et al . Stokes-space analysis of modal dispersion in fibers with multiple mode transmission [J ] . Optics Express , 2012 , 20 ( 11 ): 11718 - 11733 .
MILIONE G , SZTUL H I , NOLAN D A , et al . Higher-order Poincaré sphere,stokes parameters,and the angular momentum of light [J ] . Physical Review Letters , 2011 , 107 ( 5 ): 053601 .
MILIONE G , NOLAN D A , ALFANO R R . Determining principal modes in a multimode optical fiber using the mode dependent signal delay method [J ] . Journal of the Optical Society of America B , 2014 , 32 ( 1 ): 143 .
SHIEH W , KHODAKARAMI H , CHE D . Invited article:polarization diversity and modulation for high-speed optical communications:architectures and capacity [J ] . APL Photonics , 2016 , 1 ( 4 ): 040801 .
XIE C J , WINZER P J , RAYBON G , et al . Colorless coherent receiver using 3×3 coupler hybrids and single-ended detection [J ] . Optics Express , 2012 , 20 ( 2 ): 1164 .
SAVORY J S . Digital filters for coherent optical receivers [J ] . Optics Express , 2008 , 16 ( 2 ): 804 .
0
浏览量
514
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构