浏览全部资源
扫码关注微信
1. 北京邮电大学信息光子学与光通信国家重点实验室,北京 100876
2. 奥卢大学,芬兰 奥卢 90570
[ "谷志群(1986- ),女,博士,北京邮电大学信息与通信工程学院讲师,主要研究方向为智能光网络" ]
[ "张佳玮(1984- ),男,博士,北京邮电大学信息与通信工程学院副教授、硕士生导师,主要研究方向为光与无线融合网络" ]
[ "纪越峰(1960- ),男,博士,北京邮电大学信息与通信工程学院教授、博士生导师,主要研究方向为光通信网络理论与技术" ]
[ "于浩(1992- ),男,奥卢大学无线通信中心在站博士后,主要研究方向为确定性网络、边缘智能网络等" ]
[ "塔里克·塔勒布(1977- ),男,奥卢大学无线通信中心教授,主要研究方向为网络虚拟化、软件定义网络等" ]
网络出版日期:2022-07,
纸质出版日期:2022-07-20
移动端阅览
谷志群, 张佳玮, 纪越峰, 等. 数据与模型协同驱动的智能光网络架构与关键技术[J]. 电信科学, 2022,38(7):18-30.
Zhiqun GU, Jiawei ZHANG, Yuefeng JI, et al. Network architecture and key technologies of intelligent optical networks driven by data and model[J]. Telecommunications science, 2022, 38(7): 18-30.
谷志群, 张佳玮, 纪越峰, 等. 数据与模型协同驱动的智能光网络架构与关键技术[J]. 电信科学, 2022,38(7):18-30. DOI: 10.11959/j.issn.1000-0801.2022163.
Zhiqun GU, Jiawei ZHANG, Yuefeng JI, et al. Network architecture and key technologies of intelligent optical networks driven by data and model[J]. Telecommunications science, 2022, 38(7): 18-30. DOI: 10.11959/j.issn.1000-0801.2022163.
网络的规模升级和超大连接、超高带宽、超低时延应用的不断深化,对光传输网络资源利用和网络差异化服务提出了更高要求,使得传统模型驱动下的网络形态和配置方式面临挑战。基于数据与模型协同驱动思想,提出“3层3循环”架构及其“3可功能”特征的智能光网络技术方案,并对智能化实现技术展开研究,通过开发设计的智能传输网络平台对所提算法的性能进行测试,经验证,数据与模型协同驱动的智能光网络传输性能得到有效提升,为实现网络智能化提供了理论技术支撑。
With the expanding scale of the networks and the emerging applications of ultra-massive connection
ultra-high bandwidth and ultra-low delay
higher requirements are proposed for the utilization of optical transmission network resources and network differentiated services
which makes the network and configuration mode driven by the traditional approaches face challenges.Based on the idea of data and model collaborative driving
the intelligent optical network technologies of three-layerthree-cycle architecture and three functions were proposed
and the implementation technology was studied.The performance of the proposed algorithms was evaluated based on the designed intelligent transmission network platform.The validation results show that the transmission performance of intelligent optical network driven by collaborative data and model has been effectively improved
which provides theoretical and technical support for the realization of network intelligence.
LETAIEF K B , CHEN W , SHI Y M , et al . The roadmap to 6G:AI empowered wireless networks [J ] . IEEE Communications Magazine , 2019 , 57 ( 8 ): 84 - 90 .
ZHU K Y , MUKHERJEE B . Traffic grooming in an optical WDM mesh network [J ] . IEEE Journal on Selected Areas in Communications , 2002 , 20 ( 1 ): 122 - 133 .
蒲志强 , 易建强 , 刘振 , 等 . 知识和数据协同驱动的群体智能决策方法研究综述 [J ] . 自动化学报 , 2022 , 48 ( 3 ): 627 - 643 .
PU Z Q , YI J Q , LIU Z , et al . Knowledge-based and data-driven integrating methodologies for collective intelligence decision making:a survey [J ] . Acta AutomaticaSinica , 2022 , 48 ( 3 ): 627 - 643 .
GAO Z G , YAN S Y , ZHANG J W , et al . Deep reinforcement learning-based policy for baseband function placement and routing of RAN in 5G and beyond [J ] . Journal of Lightwave Technology , 2022 , 40 ( 2 ): 470 - 480 .
CHEN Z , ZHANG J W , ZHANG B J , et al . ADMIRE:demonstration of collaborative data-driven and model-driven intelligent routing engine for IP/optical cross-layer optimization in X-haul networks [C ] // Proceedings of 2022 Optical Fiber Communications Conference and Exhibition (OFC) . Piscataway:IEEE Press , 2022 : 1 - 3 .
欧阳晔 , 王立磊 , 杨爱东 , 等 . 通信人工智能的下一个十年 [J ] . 电信科学 , 2021 , 37 ( 3 ): 1 - 36 .
OUYANG Y , WANG L L , YANG A D , et al . Next decade of telecommunications artificial intelligence [J ] . Telecommunications Science , 2021 , 37 ( 3 ): 1 - 36 .
MA H X , ZHANG J W , JI Y F . Graph sequence attention network-enabled reinforcement learning for time-aware robust routing in OSU-based OTN [C ] // Proceedings of 2022 Optical Fiber Communications Conference and Exhibition (OFC) . Piscataway:IEEE Press , 2022 : 1 - 3 .
POGGIOLINI P . The GN model of non-linear propagation in uncompensated coherent optical systems [J ] . Journal of Lightwave Technology , 2012 , 30 ( 24 ): 3857 - 3879 .
ROTTONDI C , BARLETTA L , GIUSTI A , et al . Machine-learning method for quality of transmission prediction of unestablished lightpaths [J ] . Journal of Optical Communications and Networking , 2018 , 10 ( 2 ): A286 - A297 .
CHO H J , VARUGHESE S , LIPPIATT D , et al . Convolutional recurrent machine learning for osnr and launch power estimation:a critical assessment [C ] // Optical Fiber Communication Conference .[S.l.:s.n. ] : 2020 .
PESIC J , LONARDI M , ROSSI N , et al . How uncertainty on the fiber span lengths influences QoT estimation using machine learning in WDM networks [C ] // Proceedings of 2020 Optical Fiber Communications Conference and Exhibition (OFC) . Piscataway:IEEE Press , 2020 : 1 - 3 .
MORAIS R M , PEDRO J . Machine learning models for estimating quality of transmission in DWDM networks [J ] . IEEE/OSA Journal of Optical Communications & Networking , 2018 , 10 ( 10 ): D84 D99 .
LIU X M , LUN H Z , FU M F , et al . A three-stage training framework for customizing link models for optical networks [C ] // Proceedings of 2020 Optical Fiber Communications Conference and Exhibition (OFC) . Piscataway:IEEE Press , 2020 .
LIU C Y , CHEN X L , PROIETTI R , et al . Evol-TL:evolutionary transfer learning for QoT estimation in multi-domain networks [C ] // Proceedings of 2020 Optical Fiber Communications Conference and Exhibition (OFC) . Piscataway:IEEE Press , 2020 : 1 - 3 .
DI MARINO R , ROTTONDI C , GIUSTI A , et al . Assessment of domain adaptation approaches for QoT estimation in optical networks [C ] // Proceedings of Optical Fiber Communication Conference (OFC) 2020.Washington,D.C . :OSA , 2020 .
ROTTONDI C , DI MARINO R , NAVA M , et al . On the benefits of domain adaptation techniques for quality of transmission estimation in optical networks [J ] . Journal of Optical Communications and Networking , 2021 , 13 ( 1 ): A34 A43 .
AZZIMONTI D , ROTTONDI C , GIUSTI A , et al . Active vs transfer learning approaches for QoT estimation with small training datasets [C ] // Proceedings of Optical Fiber Communication Conference (OFC) 2020 . Washington,D.C.:OSA , 2020 .
MAHAJAN A , CHRISTODOULOPOULOS K , MARTINEZ R , et al . Machine learning assisted EDFA gain ripple modelling for accurate QoT estimation [C ] // Proceedings of 45th European Conference on Optical Communication (ECOC 2019) . IET2019 : 1 - 4 .
SARTZETAKIS I , CHRISTODOULOPOULOS K K , VARVARIGOS E M . Accurate quality of transmission estimation with machine learning [J ] . Journal of Optical Communications and Networking , 2019 , 11 ( 3 ): 140 - 150 .
GAO Z G , YAN S Y , ZHANG J W , et al . ANN-based multi-channel QoT-prediction over a 563.4-km field-trial testbed [J ] . Journal of Lightwave Technology , 2020 , 38 ( 9 ): 2646 - 2655 .
ZHANG J W , ZHAO Y L , YU X S , et al . Energy-efficient traffic grooming in sliceable-transponder-equipped IP-over-elastic optical networks [J ] . Journal of Optical Communications and Networking , 2015 , 7 ( 1 ): A142 - -A152 .
SUÁREZ-VARELA J , MESTRES A , YU J L , et al . Routing based on deep reinforcement learning in optical transport networks [C ] // Proceedings of 2019 Optical Fiber Communications Conference and Exhibition (OFC) . Piscataway:IEEE Press , 2019 : 1 - 3 .
XIAO Y M , ZHANG J W , JI Y F . Resource-efficient slicing with topology-level protection in optical access/aggregation networks for 5G and beyond [C ] // Proceedings of 2021 Optical Fiber Communications Conference and Exhibition (OFC) . Piscataway:IEEE Press , 2021 : 1 - 3 .
GOUR R , ISHIGAKI G , KONG J , et al . Availability-guaranteed slice composition for service function chains in 5G transport networks [J ] . Journal of Optical Communications and Networking , 2021 , 13 ( 3 ): 14 - 24 .
ZHENG D Y , PENG C Z , LIAO X T , et al . Towards latency optimization in hybrid service function chain composition and embedding [C ] // Proceedings of IEEE INFOCOM 2020 - IEEE Conference on Computer Communications . Piscataway:IEEE Press , 2020 : 1539 - 1548 .
YU H , MUSUMECI F , ZHANG J W , et al . Isolation-aware 5G RAN slice mapping over WDM metro-aggregation networks [J ] . Journal of Lightwave Technology , 2020 , 38 ( 6 ): 1125 - 1137 .
YU H , TALEB T , ZHANG J W . Deterministic latency/jitter-aware service function chaining over beyond 5G edge fabric [J ] . IEEE Transactions on Network and Service Management , 2022 , 1431 ( 99 ): 1 .
YU H , TALEB T , ZHANG J W , et al . Deterministic latency bounded network slice deployment in IP-over-WDM based me tro-aggregation networks [J ] . IEEE Transactions on Network Science and Engineering , 2022 , 9 ( 2 ): 596 - 607 .
ADDAD R A , DUTRA D L C , TALEB T , et al . Toward using reinforcement learning for trigger selection in network slice mobility [J ] . IEEE Journal on Selected Areas in Communications , 2021 , 39 ( 7 ): 2241 - 2253 .
0
浏览量
379
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构