浏览全部资源
扫码关注微信
1. 湖州师范学院信息工程学院,浙江 湖州 313000
2. 浙江省现代农业资源智慧管理与应用研究重点实验室,浙江 湖州 313000
[ "金楠(1996- ),男,湖州师范学院信息工程学院硕士生,主要研究方向为深度学习、个性化推荐" ]
[ "王瑞琴(1979- ),女,湖州师范学院信息工程学院教授、硕士生导师,主要研究方向为自然语言理解、数据挖掘、个性化推荐" ]
[ "陆悦聪(1996- ),男,湖州师范学院信息工程学院硕士生,主要研究方向为机器学习与数据挖掘" ]
网络出版日期:2022-10,
纸质出版日期:2022-10-20
移动端阅览
金楠, 王瑞琴, 陆悦聪. 基于艾宾浩斯遗忘曲线和注意力机制的推荐算法[J]. 电信科学, 2022,38(10):89-97.
Nan JIN, Ruiqin WANG, Yuecong LU. Ebbinghaus forgetting curve and attention mechanism based recommendation algorithm[J]. Telecommunications science, 2022, 38(10): 89-97.
金楠, 王瑞琴, 陆悦聪. 基于艾宾浩斯遗忘曲线和注意力机制的推荐算法[J]. 电信科学, 2022,38(10):89-97. DOI: 10.11959/j.issn.1000-0801.2022266.
Nan JIN, Ruiqin WANG, Yuecong LU. Ebbinghaus forgetting curve and attention mechanism based recommendation algorithm[J]. Telecommunications science, 2022, 38(10): 89-97. DOI: 10.11959/j.issn.1000-0801.2022266.
传统基于注意力机制的推荐算法只利用位置嵌入对用户行为序列进行建模,忽略了具体的时间戳信息,导致推荐性能不佳和模型训练过拟合等问题。提出基于时间注意力的多任务矩阵分解推荐模型,利用注意力机制提取邻域信息对用户和物品进行嵌入编码,借助艾宾浩斯遗忘曲线描述用户兴趣随时间的变化特性,在模型训练过程中引入经验回放的强化学习策略模拟人类的记忆复习过程。真实数据集上的实验结果表明,该模型比现有推荐模型具有更好的推荐性能。
Traditional attention-based recommendation algorithms only use position embeddings to model user behavior sequences
however
ignore specific timestamp information
resulting in poor recommendation performance and overfitting of model training.The multi-task matrix factorization recommendation model based on time attention was proposed
which used the attention mechanism to extract the neighborhood information for the user and item embedding
and used the Ebbinghaus forgetting curve to describe the changing characteristics of user interests over time.The model training process introduced a reinforcement learning strategy of experience replay to simulate the human memory review process.Experimental results on real datasets show that the proposed model has better recommendation performance than existing recommendation models.
黄立威 , 江碧涛 , 吕守业 , 等 . 基于深度学习的推荐系统研究综述 [J ] . 计算机学报 , 2018 , 41 ( 7 ): 1619 - 1647 .
HUANG L W , JIANG B T , LYU S Y , et al . Survey on deep learning based recommender systems [J ] . Chinese Journal of Computers , 2018 , 41 ( 7 ): 1619 - 1647 .
纪佳琪 , 姜学东 . 深度协同过滤推荐模型研究 [J ] . 计算机应用与软件 , 2020 , 37 ( 7 ): 240 - 245 .
JI J Q , JIANG X D . Deep collaborative filtering recommender model [J ] . Computer Applications and Software , 2020 , 37 ( 7 ): 240 - 245 .
HE X N , LIAO L Z , ZHANG H W , et al . Neural collaborative filtering [C ] // Proceedings of the 26th International Conference on World Wide Web .[S.l.:s.n. ] , 2017 : 173 - 182 .
VEIT A , WILBER M J , BELONGIE S . Residual networks behave like ensembles of relatively shallow networks [J ] . Advances in Neural Information Processing Systems , 2016 , 29 : 550 - 558 .
DENG Z H , HUANG L , WANG C D , et al . DeepCF:a unified framework of representation learning and matching function learning in recommender system [J ] . Proceedings of the AAAI Conference on Artificial Intelligence , 2019 , 33 : 61 - 68 .
SHEN T , ZHOU T Y , LONG G D , et al . DiSAN:directional self-attention network for RNN/CNN-free language understanding [C ] // Proceedings of the AAAI Conference on Artificial Intelligence , 2018 , 32 ( 1 ).
ZHANG W F , YU J , HU H , et al . Multimodal feature fusion by relational reasoning and attention for visual question answering [J ] . Information Fusion , 2020 , 55 : 116 - 126 .
WANG X , HE X N , WANG M , et al . Neural graph collaborative filtering [C ] // Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval .[S.l.:s.n ] , 2019 : 165 - 174 .
WU S , TANG Y Y , ZHU Y Q , et al . Session-based recommendation with graph neural networks [J ] . Proceedings of the AAAI Conference on Artificial Intelligence , 2019 , 33 ( 1 ): 346 - 353 .
LU Y F , XIE R B , SHI C , et al . Social influence attentive neural network for friend-enhanced recommendation [C ] // Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases .[S.l.:s.n. ] , 2020 : 3 - 18 .
WANG Z , LIN G Y , TAN H B , et al . CKAN:collaborative knowledge-aware attentive network for recommender systems [C ] // Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval . New York:ACM Press , 2020 : 219 - 228 .
WANG Z Y , WEI W , CONG G , et al . Global context enhanced graph neural networks for session-based recommendation [C ] // Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval . New York:ACM Press , 2020 : 169 - 178 .
XIA X , YIN H Z , YU J L , et al . Self-supervised hypergraph convolutional networks for session-based recommendation [J ] . Proceedings of the AAAI Conference on Artificial Intelligence , 2021 , 35 ( 5 ): 4503 - 4511 .
ZHANG Y , YANG Q . An overview of multi-task learning [J ] . National Science Review , 2017 , 5 ( 1 ): 30 - 43 .
LU Y C , DONG R H , SMYTH B . Why I like it:multi-task learning for recommendation and explanation [C ] // Proceedings of the 12th ACM Conference on Recommender Systems . New York:ACM Press , 2018 : 4 - 12 .
XIAO Y , LI C D , LIU V . DFM-GCN:a multi-task learning recommendation based on a deep graph neural network [J ] . Mathematics , 2022 , 10 ( 5 ): 721 .
WANG Y Q , DONG L Y , LI Y L , et al . Multitask feature learning approach for knowledge graph enhanced recommendations with RippleNet [J ] . PLoS One , 2021 , 16 ( 5 ): e0251162 .
LIU W W , ZHANG Y , WANG J L , et al . Item relationship graph neural networks for E-commerce [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2022 , 33 ( 9 ): 4785 - 4799 .
LINDEN G , SMITH B , YORK J.Amazon . com recommendations:item-to-item collaborative filtering [J ] . IEEE Internet Computing , 2003 , 7 ( 1 ): 76 - 80 .
KOREN Y , BELL R , VOLINSKY C . Matrix factorization techniques for recommender systems [J ] . Computer , 2009 , 42 ( 8 ): 30 - 37 .
ZHENG S , DING C , NIE F P . Regularized singular value decomposition and application to recommender system [J ] . arXiv preprint,2018,arXiv:1804.05090 .
MOLCHANOV P , TYREE S , KARRAS T , et al . Pruning convolutional neural networks for resource efficient inference [J ] . arXiv preprint,2016,arXiv:1611.06440 .
0
浏览量
555
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构