浏览全部资源
扫码关注微信
[ "范圆梦(1997- ),女,杭州电子科技大学电子信息学院硕士生,主要研究方向为认知无线电、频谱感知等" ]
[ "刘顺兰(1965- ),女,杭州电子科技大学电子信息学院教授,主要研究方向为信息与信号处理、无线通信等" ]
网络出版日期:2023-01,
纸质出版日期:2023-01-20
移动端阅览
范圆梦, 刘顺兰. 基于随机共振和非中心F分布的频谱感知算法[J]. 电信科学, 2023,39(1):42-50.
Yuanmeng FAN, Shunlan LIU. Spectrum sensing algorithm based on stochastic resonance and non-central F-distribution[J]. Telecommunications science, 2023, 39(1): 42-50.
范圆梦, 刘顺兰. 基于随机共振和非中心F分布的频谱感知算法[J]. 电信科学, 2023,39(1):42-50. DOI: 10.11959/j.issn.1000-0801.2023003.
Yuanmeng FAN, Shunlan LIU. Spectrum sensing algorithm based on stochastic resonance and non-central F-distribution[J]. Telecommunications science, 2023, 39(1): 42-50. DOI: 10.11959/j.issn.1000-0801.2023003.
为解决频谱感知算法在低信噪比(SNR)时检测概率较低且检测所需采样点数较多的问题,提出了基于随机共振和非中心F分布(SRNF)的频谱感知算法。通过引入直流随机共振噪声,建立了SRNF的系统模型,推导了服从非中心 F 分布的检验统计量表达式、虚警概率与检测概率以及判决门限表达式,并采用数值法求解最佳的随机共振噪声参数。仿真结果表明,在低信噪比时,所提基于SRNF算法的检测性能优于能量检测(ED)算法和基于F分布的盲频谱感知(BSF)算法,当虚警概率为5%、信噪比为-12 dB、采样点数为200时,所提算法的检测概率是95%,分别比BSF算法和ED算法高34%和67%;当信噪比为-12 dB、检测概率达到95%时,所提算法所需的采样点数是210,比BSF算法节省了340个采样点。此外,噪声不确定度对所提算法的影响小于ED算法。
To solve the problem that the detection probability of the spectrum sensing algorithm is low and the number of samples required for detection is large at low signal-to-noise ratio (SNR)
a spectrum sensing algorithm based on stochastic resonance and non-central F-distribution (SRNF) was proposed.By introducing direct-current stochastic resonance noise
the system model of SRNF was established
and the expression of test statistic
false alarm probability and detection probability
and the expression of decision threshold obeying non-central F-distribution were deduced
and the optimal stochastic resonance noise parameter was solved by numerical method.The simulation results show that the detection performance of the proposed SRNF algorithm is better than that of energy detection (ED) algorithm and blind spectrum sensing based on F-distribution (BSF) algorithm at a low SNR.When the false alarm probability is 5%
the SNR is -12 dB
and the number of samples is 200
the detection probability of the proposed algorithm is 95%
which is 34% and 67% higher than BSF algorithm and ED algorithm
respectively.When the SNR is -12 dB
and the detection probability reaches 95%
the number of samples required by the proposed algorithm is 210
which saves 340 samples compared to the BSF algorithm.Furthermore
the proposed algorithm is less affected by noise uncertainty than ED algorithm.
谢刚 . 认知无线电原理与应用 [M ] . 北京 : 北京邮电大学出版社 , 2016 : 7 - 11 .
XIE G . Principle and application of cognitive radio [M ] . Beijing : Beijing University of Posts and Telecommunications Press , 2016 : 7 - 11 .
TANDRA R , SAHAI A . SNR walls for signal detection [J ] . IEEE urnal of Selected Topics in Signal Processing , 2008 , 2 ( 1 ): 4 - 17 .
ZENG Y H , LIANG Y C . Maximum-minimum eigenvalue detection for cognitive radio [C ] // Proceedings of 2007 IEEE 18th International Symposium on Personal,Indoor and Mobile Radio Communications . Piscataway:IEEE Press , 2007 : 1 - 5 .
BOUALLEGUE K , DAYOUB I , GHARBI M , et al . Blind spectrum sensing using extreme eigenvalues for cognitive radio networks [J ] . IEEE Communications Letters , 2018 , 22 ( 7 ): 1386 - 1389 .
高鹏 , 刘芸江 , 高维廷 , 等 . 基于特征值极限分布的双门限DMM频谱感知算法 [J ] . 计算机工程 , 2017 , 43 ( 9 ): 68 - 74 .
GAO P , LIU Y J , GAO W T , et al . Double threshold DMM spectrum sensing algorithm based on limiting eigenvalue distribution [J ] . Computer Engineering , 2017 , 43 ( 9 ): 68 - 74 .
赵文静 , 李贺 , 金明录 . 基于特征值的频谱感知融合算法 [J ] . 通信学报 , 2019 , 40 ( 11 ): 57 - 64 .
ZHAO W J , LI H , JIN M L . Fusion spectrum sensing algorithm based on eigenvalues [J ] . Journal on Communications , 2019 , 40 ( 11 ): 57 - 64 .
叶迎晖 , 卢光跃 . 采用相关系数和拟合优度的频谱盲检测 [J ] . 信号处理 , 2016 , 32 ( 11 ): 1363 - 1368 .
YE Y H , LU G Y . Employing correlation coefficient and goodness of fit for blind spectrum sensing [J ] . Journal of Signal Processing , 2016 , 32 ( 11 ): 1363 - 1368 .
WANG H Q , YANG E H , ZHAO Z J , et al . Spectrum sensing in cognitive radio using goodness of fit testing [J ] . IEEE Transactions on Wireless Communications , 2009 , 8 ( 11 ): 5427 - 5430 .
TEGUIG D , LE NIR V , SCHEERS B . Spectrum sensing method based on goodness of fit test using Chi-square distribution [J ] . Electronics Letters , 2014 , 50 ( 9 ): 713 - 715 .
叶迎晖 , 卢光跃 , 弥寅 . 利用样本特征的盲频谱感知算法 [J ] . 信号处理 , 2016 , 32 ( 4 ): 444 - 450 .
YE Y H , LU G Y , MI Y . Employing sample features for blind spectrum sensing algorithm [J ] . Journal of Signal Processing , 2016 , 32 ( 4 ): 444 - 450 .
GAMMAITONI L , HÄNGGI P , JUNG P , et al . Stochastic resonance [J ] . Reviews of Modern Physics , 1998 , 70 ( 1 ): 223 - 287 .
高锐 , 李赞 , 吴利平 , 等 . 低信噪比条件下基于随机共振的感知方法与性能分析 [J ] . 电子学报 , 2013 , 41 ( 9 ): 1672 - 1679 .
GAO R , LI Z , WU L P , et al . A spectrum sensing method and performance analysis based on stochastic resonance under low SNR [J ] . Acta Electronica Sinica , 2013 , 41 ( 9 ): 1672 - 1679 .
刘进 , 李赞 , 高锐 . 低信噪比下采用广义随机共振的能量检测算法 [J ] . 西安交通大学学报 , 2015 , 49 ( 6 ): 27 - 32 , 59 .
LIU J , LI Z , GAO R . An energy detection algorithm using generalized stochastic resonance under low signal-to-noise ratios [J ] . Journal of Xi'an Jiaotong University , 2015 , 49 ( 6 ): 27 - 32 , 59 .
CHEN H , VARSHNEY P K , KAY S M , et al . Theory of the stochastic resonance effect in signal detection:part I—fixed detectors [J ] . IEEE Transactions on Signal Processing , 2007 , 55 ( 7 ): 3172 - 3184 .
盛骤 , 谢式千 , 潘承毅 . 概率论与数理统计(第四版) [M ] . 北京 : 高等教育出版社 , 2008 :143.
SHENG Z , XIE S Q , PAN C Y . Probability theory and mathematical statistics (fourth edition) [M ] . Beijing : Higher Education Press , 2008 :143.
洪永淼 . 概率论与统计学 [M ] . 北京 : 中国统计出版社 , 2017 : 263 - 265 .
HONG Y M . Probability theory and statistics [M ] . Beijing : China Statistics Press , 2017 : 263 - 265 .
聂慧锋 , 徐声海 . 认知无线电中的协作频谱感知技术 [J ] . 电子技术应用 , 2020 , 46 ( 5 ): 63 - 67 , 73 .
NIE H F , XU S H . The technology of cooperative spectrum sensing in cognitive radio [J ] . Application of Electronic Technique , 2020 , 46 ( 5 ): 63 - 67 , 73 .
刘顺兰 , 王静 , 包建荣 . 高检测概率协方差矩阵机会协作频谱感知 [J ] . 电信科学 , 2019 , 35 ( 1 ): 67 - 73 .
LIU S L , WANG J , BAO J R . Covariance matrix opportunistic cooperative spectrum sensing of high detection probability [J ] . Telecommunications Science , 2019 , 35 ( 1 ): 67 - 73 .
0
浏览量
152
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构