浏览全部资源
扫码关注微信
1. 清华大学深圳国际研究生院,广东 深圳 518055
2. 鹏城实验室,广东 深圳 518055
[ "胡珈玮(1999- ),男,清华大学深圳国际研究生院硕士生,主要研究方向为深度强化学习和无人机辅助通信" ]
[ "刘晓谦(1999- ),男,清华大学深圳国际研究生院硕士生,主要研究方向为水下无线光通信和下一代短距无线通信技术" ]
[ "唐昕柯(1989- ),男,鹏城实验室副研究员,主要研究方向为无线光通信、量子密钥分发、光纤通信等" ]
[ "董宇涵(1979- ),男,清华大学深圳国际研究生院副教授、鹏城实验室副研究员,主要研究方向为无线通信与网络、无线光通信、机器学习与优化" ]
网络出版日期:2023-05,
纸质出版日期:2023-05-20
移动端阅览
胡珈玮, 刘晓谦, 唐昕柯, 等. 基于DQN的UUV辅助水下无线光通信轨迹规划系统[J]. 电信科学, 2023,39(5):42-47.
Jiawei HU, Xiaoqian LIU, Xinke TANG, et al. Trajectory planning of UUV-assisted UWOC systems based on DQN[J]. Telecommunications science, 2023, 39(5): 42-47.
胡珈玮, 刘晓谦, 唐昕柯, 等. 基于DQN的UUV辅助水下无线光通信轨迹规划系统[J]. 电信科学, 2023,39(5):42-47. DOI: 10.11959/j.issn.1000-0801.2023108.
Jiawei HU, Xiaoqian LIU, Xinke TANG, et al. Trajectory planning of UUV-assisted UWOC systems based on DQN[J]. Telecommunications science, 2023, 39(5): 42-47. DOI: 10.11959/j.issn.1000-0801.2023108.
无人水下航行器(unmanned underwater vehicle,UUV)作为重要潜基通信平台可以辅助水下无线光通信(underwater wireless optical communication,UWOC)。然而,在实际应用中,水体波动特性、不同水质环境、多用户接入等给UUV辅助UWOC系统带来很大挑战,因而适当的路径规划策略可以应对上述挑战并最大限度地提升系统整体和每一个用户的性能。将深度强化学习(deep reinforcement learning,DRL)用于无人载具路径规划中,提出了一种 UUV 辅助 UWOC 系统的轨迹规划方案。通过 DRL 中深度 Q 网络(deep Q-network,DQN)方法让UUV自动决策航行方向,从而提升系统和用户的链路通信容量。同时,研究了不同水质对容量提升效果的影响。仿真实验表明,DQN输出策略可以在一定程度上提升系统整体和各个用户的链路通信容量,并且UUV在清澈海水中的容量提升效果优于纯净海水但低于沿岸水。
As a key submarine-based communication platform
unmanned underwater vehicle (UUV) can facilitate underwater wireless optical communication (UWOC).However
fluctuating characteristics of water body
different water qualities
multi-user access present challenges to UUV-assisted UWOC systems
which could be alleviated by an appropriate path planning to maximize the system and each user performance.Deep reinforcement learning (DRL) technology was applied in the path planning of autonomous vehicles
a trajectory planning scheme for UUV-assisted UWOC systems was proposed.The UUV automatically decides the navigation direction through deep Q-network (DQN) method
thereby improving the communication capacity of the system and each user.The impact of distinct water qualities on the capacity enhancement was also investigated.Simulation results suggest that the outputted strategy of DQN can improve the link capacity of the system and each user.This capacity improvement in clear seawater is better than that in pure seawater but lower than that in coastal water.
王亭亭 , 张南南 , 岳才谦 , 等 . 基于水声通信的AUV组网与协同导航 [J ] . 水下无人系统学报 , 2021 , 29 ( 4 ): 400 - 406 .
WANG T T , ZHANG N N , YUE C Q , et al . AUV networking and cooperative navigation based on underwater acoustic communication [J ] . Journal of Unmanned Undersea Systems , 2021 , 29 ( 4 ): 400 - 406 .
HUANG N , GONG C , FU C F , et al . Preliminary investigation of air-to-water visible light communication link under strong ambient light [C ] // Proceedings of 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall) . Piscataway:IEEE Press , 2021 : 1 - 5 .
郭银景 , 徐锋 , 屈衍玺 , 等 . 水下可见光通信关键技术综述 [J ] . 光通信研究 , 2020 ( 2 ): 1 - 6 , 19 .
GUO Y J , XU F , QU Y X , et al . A survey of key technologies of underwater visible light communication [J ] . Study on Optical Communications , 2020 ( 2 ): 1 - 6 , 19 .
吕斌斌 , 林酩涞 , 万鑫 . 水下可见光通信在水下作战体系中的应用设想 [J ] . 水下无人系统学报 , 2022 , 30 ( 6 ): 787 - 793 .
LYU B B , LIN M L , WAN X . Application of underwater visible light communication in underwater warfare system [J ] . Journal of Unmanned Undersea Systems , 2022 , 30 ( 6 ): 787 - 793 .
ANGUITA D , BRIZZOLARA D , PARODI G , et al . Optical wireless underwater communication for AUV:preliminary simulation and experimental results [C ] // Proceedings of OCEANS 2011 IEEE - Spain . Piscataway:IEEE Press , 2011 : 1 - 5 .
MAHMOODI K A , UYSAL M . AUV trajectory optimization for an optical underwater sensor network in the presence of ocean currents [C ] // Proceedings of 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom) . Piscataway:IEEE Press , 2021 : 1 - 6 .
MAHMOODI K A , UYSAL M . Energy aware trajectory optimization of solar powered AUVs for optical underwater sensor networks [J ] . IEEE Transactions on Communications , 2022 , 70 ( 12 ): 8258 - 8269 .
WANG Y N , CHEN M Z , YANG Z H , et al . Deep learning for optimal deployment of UAVs with visible light communications [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 11 ): 7049 - 7063 .
ZHU Z Y , YANG Y , GUO C L , et al . Power efficient deployment of VLC-enabled UAVs [C ] // Proceedings of 2020 IEEE 31st Annual International Symposium on Personal,Indoor and Mobile Radio Communications . Piscataway:IEEE Press , 2020 : 1 - 6 .
CANG Y H , CHEN M , ZHAO J W , et al . Joint deployment and resource management for VLC-enabled RISs-assisted UAV networks [J ] . IEEE Transactions on Wireless Communications , 2023 , 22 ( 2 ): 746 - 760 .
YANG Y , CHEN M Z , GUO C L , et al . Power efficient visible light communication with unmanned aerial vehicles [J ] . IEEE Communications Letters , 2019 , 23 ( 7 ): 1272 - 1275 .
ELAMASSIE M , MIRAMIRKHANI F , UYSAL M . Performance characterization of underwater visible light communication [J ] . IEEE Transactions on Communications , 2019 , 67 ( 1 ): 543 - 552 .
0
浏览量
258
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构