浏览全部资源
扫码关注微信
1. 香港城市大学深圳研究院,广东 深圳 518057
2. 香港城市大学计算机学院,香港 999077
3. 清华大学深圳国际研究生院,广东 深圳 518071
[ "吴如成(1998- ),男,香港城市大学计算机学院博士生,香港城市大学深圳研究院博士生,主要研究方向为人工智能、可穿戴设备和物联网等" ]
[ "丁文伯(1990- ),男,博士,清华大学深圳国际研究生院助理教授、博士生导师,主要研究方向为信号处理、机器人、人机界面和机器学习" ]
[ "徐晓敏(1989- ),女,博士,清华大学深圳国际研究生院副教授、博士生导师,主要从事柔性材料和生物电子器件领域工作" ]
[ "宋林琦(1985- ),男,博士,香港城市大学计算机学院助理教授,香港城市大学深圳研究院副研究员,主要研究方向为数据科学、机器学习、推荐系统、信息论和算法" ]
[ "徐伟涛(1987- ),男,博士,香港城市大学计算机学院助理教授,香港城市大学深圳研究院副研究员,主要研究方向为物联网、移动计算、物联网安全、可穿戴设备和低功耗广域网" ]
网络出版日期:2023-07,
纸质出版日期:2023-07-20
移动端阅览
吴如成, 丁文伯, 徐晓敏, 等. 基于柔性太阳能电池和超薄水凝胶薄膜的手势识别[J]. 电信科学, 2023,39(7):109-115.
Rucheng WU, Wenbo DING, Xiaomin XU, et al. Gesture recognition based on flexible solar cells and ultrathin hydrogel film[J]. Telecommunications science, 2023, 39(7): 109-115.
吴如成, 丁文伯, 徐晓敏, 等. 基于柔性太阳能电池和超薄水凝胶薄膜的手势识别[J]. 电信科学, 2023,39(7):109-115. DOI: 10.11959/j.issn.1000-0801.2023143.
Rucheng WU, Wenbo DING, Xiaomin XU, et al. Gesture recognition based on flexible solar cells and ultrathin hydrogel film[J]. Telecommunications science, 2023, 39(7): 109-115. DOI: 10.11959/j.issn.1000-0801.2023143.
人们在日常生活中会用到各种各样的手势,如何将不同的手势与现有的智能可穿戴设备等结合起来对生活质量的提升有不可或缺的作用,利用太阳能相关设备的光电转换特性可以很好地解决手势识别和设备能耗问题。在柔性太阳能电池与手势识别结合的研究中,采集了5种常用手势数据,进行了Z-Score、低通滤波、滑动窗口等信号处理方法,并利用随机森林、支持向量机和神经网络等对其进行分类,成功地在小样本的基础上实现了100%的预测精度,可以证明该方法在手势识别的应用中有显著优势。
Daily life involves various gestures
and combining these with smart wearable devices is crucial for improving quality of life.One effective solution to the challenges of gesture recognition and device energy consumption isutilizing the photoelectric conversion characteristics of solar energy-related devices.The data of five commonly used gestures were collected in the research of the combination of flexible solar cells and gesture recognition.Z-Score
low-pass filter
sliding window techniques for signal processing were applied
and successfully achieved 100% predicted accuracy using random forest
support vector machine and neural network algorithms even with small samples which showed that this method had significant advantages in the application of gesture recognition.
CHAUDHARY A , RAHEJA J L , DAS K , et al . Intelligent approaches to interact with machines using hand gesture recognition in natural way:asurvey [J ] . International Journal of Computer Science & Engineering Survey , 2011 , 2 ( 1 ): 122 - 133 .
RUIZ J , LI Y , LANK E . User-defined motion gestures for mobile interaction [C ] // Proceedings of the SIGCHI Conference on Human Factors in Computing Systems . New York:ACM Press , 2011 : 197 - 206 .
STURMAN D J , ZELTZER D . A survey of glove-based input [J ] . IEEE Computer Graphics and Applications , 1994 , 14 ( 1 ): 30 - 39 .
PAVLOVIC V I , SHARMA R , HUANG T S . Visual interpretation of hand gestures for human-computer interaction:a review [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 1997 , 19 ( 7 ): 677 - 695 .
QUEK F K H . Toward a vision-based hand gesture interface [C ] // Proceedings of Virtual Reality Software and Technology . WORLD SCIENTIFIC , 1994 : 17 - 31 .
JARVIS R A . A perspective on range finding techniques for computer vision [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 1983 , PAMI-5 ( 2 ): 122 - 139 .
WURFEL P . Physics of solar cells:from basic principles to advanced concepts [M ] . John Wiley & Sons , 2016 .
CHIOU R , NGUYEN H , CIOBANESCU H I , et al . Developing VR-based solar cell lab module in green manufacturing education [C ] // Proceedings of 2021 ASEE Virtual Annual Conference Content Access Proceedings . ASEE Conferences , 2021 .
CHENG S M , LOU Z R , ZHANG L , et al . Ultrathin hydrogel films toward breathable skin-integrated electronics [J ] . Advanced Materials (Deerfield Beach,Fla) , 2023 , 35 ( 1 ): e2206793 .
MITRA S , ACHARYA T . Gesture recognition:asurvey [J ] . IEEE Transactions on Systems,Man,and Cybernetics,Part C (Applications and Reviews) , 2007 , 37 ( 3 ): 311 - 324 .
ABDELNASSER H , HARRAS K , YOUSSEF M . Wigest:aubiquitous WiFi-based gesture recognition system [C ] // Proceedings of Qatar Foundation Annual Research Conference Proceedings Volume 2014 Issue 1 . Hamad bin Khalifa University Press (HBKU Press) , 2014 :ITPP1127.
Human 3D reconstruction and motion capture using a single flying camera - rare &special e-zone [EB ] . 2018 .
JACKO J , SEARS A . Proceedings of the SIGCHI conference on human factors in computing systems [EB ] . 2001 .
XU Z , BAI K , ZHU S C . TapLogger:inferring user inputs on smartphone touchscreens using on-board motion sensors [C ] // Proceedings of the Fifth ACM Conference on Security and Privacy in Wireless and Mobile Networks . New York:ACM Press , 2012 : 113 - 124 .
LI T X , XIONG X , XIE Y F , et al . Reconstructing hand poses using visible light [J ] . Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Technologies , 2017 , 1 ( 3 ): 1 - 20 .
VARSHNEY A , SOLEIMAN A , MOTTOLA L , et al . Battery-free visible light sensing [C ] // Proceedings of the 4th ACM Workshop on Visible Light Communication Systems . New York:ACM Press , 2017 : 3 - 8 .
MA D , LAN G H , HASSAN M , et al . SolarGest:ubiquitous and battery-free gesture recognition using solar cells [C ] // Proceedings of MobiCom’19:The 25th Annual International Conference on Mobile Computing and Networking . New York:ACM Press , 2019 : 1 - 15 .
CHEADLE C , VAWTER M P , FREED W J , et al . Analysis of microarray data using Z score transformation [J ] . The Journal of Molecular Diagnostics:JMD , 2003 , 5 ( 2 ): 73 - 81 .
HUANG D Y , HU W C , CHANG S H . Vision-based hand gesture recognition using PCA Gabor filters and SVM [C ] // Proceedings of 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing . Piscataway:IEEE Press , 2009 : 1 - 4 .
CAMGÖZ N C , KINDIROGLU A A , AKARUN L . Gesture recognition using template based random forest classifiers [C ] // European Conference on Computer Vision . Cham:Springer , 2015 : 579 - 594 .
WU Y H , WU Z , FU C L . Continuous arm gesture recognition based on natural features and logistic regression [J ] . IEEE Sensors Journal , 2018 , 18 ( 19 ): 8143 - 8153 .
LIU Y Q , WANG X H , YAN K . Hand gesture recognition based on concentric circular scan lines and weighted K-nearest neighbor algorithm [J ] . Multimedia Tools and Applications , 2018 , 77 ( 1 ): 209 - 223 .
CHUNG H Y , CHUNG Y L , TSAI W F . An efficient hand gesture recognition system based on deep CNN [C ] // Proceedings of 2019 IEEE International Conference on Industrial Technology (ICIT) . Piscataway:IEEE Press , 2019 : 853 - 858 .
ZHU G M , ZHANG L , SHEN P Y , et al . Multimodal gesture recognition using 3-D convolution and convolutional LSTM [J ] . IEEE Access , 2017 ( 5 ): 4517 - 4524 .
SENGUPTA A , YE Y T , WANG R , et al . Going deeper in spiking neural networks:VGG and residual architectures [J ] . Frontiers in Neuroscience , 2019 ( 13 ): 95 .
PAGLIARO M , CIRIMINNA R , PALMISANO G . Flexible solarcells [J ] . ChemSusChem , 2008 , 1 ( 11 ): 880 - 891 .
0
浏览量
141
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构