浏览全部资源
扫码关注微信
1. 浙江大学,浙江 杭州 310027
2. 中国电信股份有限公司浙江分公司,浙江 杭州 310005
[ "王建斌(1977- ),男,浙江大学博士生,中国电信股份有限公司浙江分公司无线网络中心主任、正高级工程师,主要从事无线网络新技术、新产品的研究以及无线网络的规划、优化等工作" ]
[ "王恒钧(1971- ),男,中国电信股份有限公司浙江分公司云网发展部(科技创新部)总经理、高级工程师,主要从事云网技术及规划、工程管理等工作" ]
[ "吴松(1987- ),男,中国电信股份有限公司浙江分公司高级工程师,主要从事无线网系统分析优化,5G网络规划、优化和课题研究工作" ]
[ "王贞凯(1973- ),男,中国电信股份有限公司浙江分公司高级工程师,主要研究方向为无线网络新技术、新产品以及无线网络的规划及工程管理等" ]
网络出版日期:2023-07,
纸质出版日期:2023-07-20
移动端阅览
王建斌, 王恒钧, 吴松, 等. 基于粒子群优化算法的5G波束权值寻优方法[J]. 电信科学, 2023,39(7):23-34.
Jianbin WANG, Hengjun WANG, Song WU, et al. 5G beamforming weight optimization method based on particle swarm optimization algorithm[J]. Telecommunications science, 2023, 39(7): 23-34.
王建斌, 王恒钧, 吴松, 等. 基于粒子群优化算法的5G波束权值寻优方法[J]. 电信科学, 2023,39(7):23-34. DOI: 10.11959/j.issn.1000-0801.2023146.
Jianbin WANG, Hengjun WANG, Song WU, et al. 5G beamforming weight optimization method based on particle swarm optimization algorithm[J]. Telecommunications science, 2023, 39(7): 23-34. DOI: 10.11959/j.issn.1000-0801.2023146.
为解决高层建筑物室内5G信号覆盖不足、优化难度大的问题,提出基于粒子群优化(particle swarm optimization,PSO)算法的5G波束权值寻优方法。通过采集终端数据将网络解耦成多个子网切片,对单小区权值库进行规划和仿真,构建多小区权值组变量以及适应度函数。最后,采用PSO算法求解多小区波束权值组局部最优值。测试结果表明,平均参考信号接收功率(reference signal receiving power,RSRP)提升8.7%,平均信干噪比(signal to interference plus noise ratio,SINR)提升17.5%,下行速率提升27.3%。所提方法在5G天线波束权值寻优上具有低成本、高效率、智能化的优势,可以改善高层室内用户的感知。
In order to solve the problems of insufficient indoor 5G signal coverage and difficulty in optimization of high-rise buildings
the 5G beamforming weight optimization method based on particle swarm optimization (PSO) algorithm was proposed.Decoupling and reducing the network dimension into multiple subnet slices by collecting the data reported by the terminal
and the single cell weight database was planned and simulated to create the multi-cells weights group and fitness function.Finally
the PSO algorithm was adopted to obtain the local optimal weight group of the multi-cells.The test results show that the reference signal receiving power (RSRP) is improved by 8.7%
the signal to interference plus noise ratio (SINR) is improved by 17.5%
the downlink throughput is promoted by 27.3% together.The proposed method has the advantages of low cost
high efficiency and intelligence
and can significantly improve the user perception in high-rise buildings.
陈山枝 . 发展 5G 的分析与建议 [J ] . 电信科学 , 2016 , 32 ( 7 ): 1 - 10 .
CHEN S Z . Analysis and suggestion of future 5G directions [J ] . Telecommunications Science , 2016 , 32 ( 7 ): 1 - 10 .
胡铮 , 袁浩 , 朱新宁 , 等 . 面向5G需求的人群流量预测模型研究 [J ] . 通信学报 , 2019 , 40 ( 2 ): 1 - 10 .
HU Z , YUAN H , ZHU X N , et al . Research on crowd flows prediction model for 5G demand [J ] . Journal on Communications , 2019 , 40 ( 2 ): 1 - 10 .
ZHAO A P , REN Z Y . Wideband MIMO antenna systems based on coupled-loop antenna for 5G N77/N78/N79 applications in mobile terminals [J ] . IEEE Access , 2019 ( 7 ): 93761 - 93771 .
张平 , 陶运铮 , 张治 . 5G 若干关键技术评述 [J ] . 通信学报 , 2016 , 37 ( 7 ): 15 - 29 .
ZHANG P , TAO Y Z , ZHANG Z . Survey of several key technologies for 5G [J ] . Journal on Communications , 2016 , 37 ( 7 ): 15 - 29 .
陈晓贝 , 魏克军 . 全球5G研究动态和标准进展 [J ] . 电信科学 , 2015 , 31 ( 5 ): 10 - 13 .
CHEN X B , WEI K J . Global research and standardization progress of 5G [J ] . Telecommunications Science , 2015 , 31 ( 5 ): 10 - 13 .
李南希 , 朱剑驰 , 郭婧 , 等 . NR MIMO增强演进及标准化进展 [J ] . 电信科学 , 2022 , 38 ( 3 ): 84 - 92 .
LI N X , ZHU J C , GUO J , et al . Evolution and standardization progress for NR MIMO enhancement [J ] . Telecommunications Science , 2022 , 38 ( 3 ): 84 - 92 .
童辉 . 5G新空口设计:如何从LTE拓展与创新 [J ] . 电信科学 , 2019 , 35 ( 7 ): 17 - 26 .
TONG H . 5G new radio design:why/how to extend/innovate from LTE [J ] . Telecommunications Science , 2019 , 35 ( 7 ): 17 - 26 .
林泓池 , 孙文彬 , 郭继冲 , 等 . 5G 先进技术研究进展 [J ] . 电信科学 , 2018 , 34 ( 8 ): 34 - 45 .
LIN H C , SUN W B , GUO J C , et al . Research progress of 5G advanced technologies [J ] . Telecommunications Science , 2018 , 34 ( 8 ): 34 - 45 .
王庆扬 , 谢沛荣 , 熊尚坤 , 等 . 5G 关键技术与标准综述 [J ] . 电信科学 , 2017 , 33 ( 11 ): 112 - 122 .
WANG Q Y , XIE P R , XIONG S K , et al . Key technology and standardization progress for 5G [J ] . Telecommunications Science , 2017 , 33 ( 11 ): 112 - 122 .
3GPP . Technical specification group radio access network;study on new radio access technology; radio interface protocol aspects:TR 38.804 V14.0.0 [S ] . 2017 .
林世明 , 高志斌 , 高凤连 , 等 . 基于路测的TD-LTE网络优化分析 [J ] . 现代电子技术 , 2015 , 38 ( 9 ): 12 - 15 .
LIN S M , GAO Z B , GAO F L , et al . TD-LTE network optimization analysis based on drive test [J ] . Modern Electronics Technique , 2015 , 38 ( 9 ): 12 - 15 .
梁缨 , 陈恒州 . 基于路测的移动通信网络优化分析与实践 [J ] . 电子技术与软件工程 , 2014 ( 9 ): 76 - 77 .
LIANG Y , CHEN H Z . Optimization analysis and practice of mobile communication networks based on drive test [J ] . Electronic Technology & Software Engineering , 2014 ( 9 ): 76 - 77 .
何珂 , 全涛 , 赵晋 , 等 . 基于MR数据的LTE网络射频精细优化的方法研究 [J ] . 移动通信 , 2013 , 37 ( 12 ): 15 - 19 .
HE K , QUAN T , ZHAO J , et al . Research on RF refned optimization method of LTE network based on MR [J ] . Mobile Communications , 2013 , 37 ( 12 ): 15 - 19 .
樊东兴 . 基于 MR 数据的无线网络优化 [J ] . 中国新通信 , 2014 , 16 ( 5 ): 47 - 48 .
FAN D X . Wireless network optimization based on MR data [J ] . China New Telecommunications , 2014 , 16 ( 5 ): 47 - 48 .
姜备 . 基于LTE MR的移动网络优化研究 [D ] . 上海:上海师范大学 , 2016 .
JIANG B . Research on mobile network optimization based on LTE MR [D ] . Shanghai:Shanghai Normal University , 2016 .
周俊 , 权笑 , 马建辉 . 5G无线优化面临的挑战及应对策略 [J ] . 电信科学 , 2020 , 36 ( 1 ): 58 - 65 .
ZHOU J , QUAN X , MA J H . Challenge and strategy of 5G radio optimization [J ] . Telecommunications Science , 2020 , 36 ( 1 ): 58 - 65 .
3GPP . Technical specification group radio access network; NR;physical layer procedures for control (Release 16):TS 38.214 V16.4.0 [S ] . 2020 .
3GPP . Technical specification group radio access network; NR;radio resource control (RRC) protocol specification (Release 16):TS 38.331 V16.4.0 [S ] . 2020 .
李贝 , 胡煜华 , 王鑫炎 , 等 . 5G网络SSB 1+X波束技术应用研究 [J ] . 电信科学 , 2022 , 38 ( 1 ): 150 - 158 .
LI B , HU Y H , WANG X Y , et al . Research on SSB 1+X beam technology of 5G network [J ] . Telecommunications Science , 2022 , 38 ( 1 ): 150 - 158 .
马传项 . 蚁群算法在天线权值优化中的应用研究 [J ] . 江苏通信 , 2021 , 37 ( 4 ): 59 - 64 .
MA C X . Research on application of ant colony algorithm in antenna weight optimization [J ] . Jiangsu Communication , 2021 , 37 ( 4 ): 59 - 64 .
马学森 , 宫帅 , 朱建 , 等 . 动态凸包引导的偏优规划蚁群算法求解TSP问题 [J ] . 通信学报 , 2018 , 39 ( 10 ): 59 - 71 .
MA X S , GONG S , ZHU J , et al . Ant colony algorithm of partially optimal programming based on dynamic convex hull guidance for solving TSP problem [J ] . Journal on Communications , 2018 , 39 ( 10 ): 59 - 71 .
张松灿 , 普杰信 , 司彦娜 , 等 . 蚁群算法在移动机器人路径规划中的应用综述 [J ] . 计算机工程与应用 , 2020 , 56 ( 8 ): 10 - 19 .
ZHANG S C , PU J X , SI Y N , et al . Survey on application of ant colony algorithm in path planning of mobile robot [J ] . Computer Engineering and Applications , 2020 , 56 ( 8 ): 10 - 19 .
KENNEDY J , EBERHART R . Particle swarm optimization [C ] // Proceedings of ICNN’95 - International Conference on Neural Networks . Piscataway:IEEE Press , 2002 : 1942 - 1948 .
SHI Y , EBERHART R . A modified particle swarm optimizer [C ] // Proceedings of 1998 IEEE International Conference on Evolutionary Computation Proceedings.IEEE World Congress on Computational Intelligence (Cat.No.98TH8360) . Piscataway:IEEE Press , 2002 : 69 - 73 .
CLERC M , KENNEDY J . The particle swarm - explosion,stability,and convergence in a multidimensional complex space [J ] . IEEE Transactions on Evolutionary Computation , 2002 , 6 ( 1 ): 58 - 73 .
BRATTON D , KENNEDY J . Defining a standard for particle swarm optimization [C ] // Proceedings of 2007 IEEE Swarm Intelligence Symposium . Piscataway:IEEE Press , 2007 : 120 - 127 .
马博荣 . 多目标粒子群优化算法的改进与研究 [D ] . 兰州:兰州大学 , 2019 .
MA B R . Improvement and research of multi-objective particle swarm optimization algorithm [D ] . Lanzhou:Lanzhou University , 2019 .
郝少伟 , 李勇军 , 赵尚弘 , 等 . 基于改进粒子群算法的多载波 NOMA 功率分配策略 [J ] . 电子学报 , 2020 , 48 ( 10 ): 2009 - 2016 .
HAO S W , LI Y J , ZHAO S H , et al . Multicarrier NOMA power allocation strategy based on I mproved particle swarm optimization algorithm [J ] . Acta Electronica Sinica , 2020 , 48 ( 10 ): 2009 - 2016 .
KUMAR V , RANI R . Ant colony optimization versus particle swarm optimization:a comparative study [J ] . Journal of Advanced Research in Dynamical and Control Systems , 2017 , 9 ( 14 ): 1292 - 1302 .
YAN S , LIU Z , LI H , LU L . A hybrid algorithm for the quadratic assignment problem based on particle swarm optimization and ant colony optimization [J ] . Journal of Intelligent Manufacturing , 2018 , 29 ( 6 ): 1341 - 1350 .
ARIFIN A Z , HANDAYANI P W , HUSNI A . Particle swarm optimization for the traveling salesman problem:a review [J ] . Journal of Physics:Conference Series , 2020 , 1546 ( 1 ): 012071 .
李军 . 5G 无线网络智能规划与仿真 [J ] . 电信科学 , 2020 , 36 ( 10 ): 109 - 119 .
LI J . Intelligent planning and simulation of 5G wireless network [J ] . Telecommunications Science , 2020 , 36 ( 10 ): 109 - 119 .
孟繁丽 , 薛伟 , 汪况伦 , 等 . 5G 无线网络智能化规划体系及实现 [J ] . 移动通信 , 2019 , 43 ( 6 ): 52 - 59 .
MENG F L , XUE W , WANG K L , et al . Intelligent planning system and implementation of 5G wireless networks [J ] . Mobile Communications , 2019 , 43 ( 6 ): 52 - 59 .
3GPP . NR; physical layer procedures for data:TS 38.214 [S ] . 2018 .
3GPP . NR; user equipment (UE) radio transmission and reception; part 1:range 1 standalone (Release 17):TS 38.101-1 [S ] . 2021 .
0
浏览量
444
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构