浏览全部资源
扫码关注微信
1. 东南大学移动通信国家重点实验室,江苏 南京 210096
2. 南通大学信息科学技术学院,江苏 南通 226019
[ "孙蕊蕊(2002- ),女,东南大学移动通信国家重点实验室博士生,主要研究方向为超大规模MIMO无线传输理论与关键技术" ]
[ "韩瑜(1991- ),女,博士,东南大学移动通信国家重点实验室副研究员,主要研究方向为面向 5G/6G 的物理层传输,包括大规模MIMO、智能超表面无线传输理论与关键技术" ]
[ "金石(1974- ),男,博士,东南大学移动通信国家重点实验室教授、博士生导师,主要研究方向为5G/B5G移动通信理论与关键技术研究、物联网理论与关键技术研究和机器学习与大数据处理在移动通信中的应用等" ]
[ "王珏(1985- ),男,博士,南通大学信息科学技术学院副教授,主要研究方向为无线通信物理层,具体包括MIMO系统及超大规模MIMO系统、智能反射面、无人机辅助通信及机器学习技术在通信中的应用" ]
网络出版日期:2023-08,
纸质出版日期:2023-08-25
移动端阅览
孙蕊蕊, 韩瑜, 金石, 等. 低复杂度超大规模MIMO无线传输设计研究[J]. 电信科学, 2023,39(9):87-96.
Ruirui SUN, Yu HAN, Shi JIN, et al. Research on low-complexity XL-MIMO wireless transmission design[J]. Telecommunications science, 2023, 39(9): 87-96.
孙蕊蕊, 韩瑜, 金石, 等. 低复杂度超大规模MIMO无线传输设计研究[J]. 电信科学, 2023,39(9):87-96. DOI: 10.11959/j.issn.1000-0801.2023170.
Ruirui SUN, Yu HAN, Shi JIN, et al. Research on low-complexity XL-MIMO wireless transmission design[J]. Telecommunications science, 2023, 39(9): 87-96. DOI: 10.11959/j.issn.1000-0801.2023170.
超大规模MIMO(extra-large scale MIMO,XL-MIMO)技术有望满足6G对高频谱效率的要求,同时也面临计算复杂度提升带来的挑战。研究发现,XL-MIMO信道独特的空间非平稳特性为低复杂度无线传输设计带来新的可能。首先从近场传播效应出发,梳理 XL-MIMO 信道特性及信道建模研究成果,深入探讨空间非平稳性出现的原因;由此引出XL-MIMO中阵列可见区域(visibility region,VR)的概念,并对结合VR信息的低复杂度无线传输设计展开讨论;接着,从子阵列划分与分布式信号处理的角度,介绍 XL-MIMO 低复杂度系统架构的实现,并总结相应的设计方案;最后,对未来研究方向进行展望。
Extra-large scale MIMO (XL-MIMO) can meet the requirement of high spectral efficiency in 6G communication
but also faces the challenge caused by the increase in computational complexity.It is found that the unique spatial non-stationary characteristics of XL-MIMO channel brings new possibilities for low-complexity wireless transmission design.Firstly
starting from the near-field propagation effect
the research results of XL-MIMO channel characteristics analysis and channel modeling were combed
and the causes of spatial non-stationarity were deeply discussed.Furthermore
the concept of array visibility region (VR) in XL-MIMO was introduced
and the low-complexity wireless transmission design combined with VR information was discussed.Then
from the perspective of sub-array partition and distributed signal processing
the implementation of XL-MIMO low-complexity system architecture was introduced
and the corresponding design schemes were summarized.Finally
the future research direction was prospected.
AL-KAMALI F , D’AMOURS C . Low-complexity hybrid precoding for subarray architecture mmWave MIMO systems [J ] . IEEE Access , 2022 ( 10 ): 74921 - 74930 .
MARINELLO J C , ABRÃO T , AMIRI A , et al . Antenna selection for improving energy efficiency in XL-MIMO systems [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 11 ): 13305 - 13318 .
YANG X , CAO F , MATTHAIOU M , et al . On the uplink transmission of extra-large scale massive MIMO systems [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 12 ): 15229 - 15243 .
ZHAO Y , ZHAI W , ZHAO J , et al . A comprehensive survey of 6G wireless communications [J ] . arXiv preprint , 2020 ,arXiv:2101.03889.
DALA PEGORARA SOUTO V , DESTER P S , SOARES PEREIRA FACINA M , et al . Emerging MIMO technologies for 6G networks [J ] . Sensors , 2023 , 23 ( 4 ): 1921 .
CUI M Y , DAI L L . Near-field channel estimation for extremely large-scale MIMO with hybrid precoding [C ] // Proceedings of 2021 IEEE Global Communications Conference (GLOBECOM) . Piscataway:IEEE Press , 2022 : 1 - 6 .
CUI M Y , DAI L L . Channel estimation for extremely largescale MIMO:far-field or near-field? [J ] . IEEE Transactions on Communications , 2022 , 70 ( 4 ): 2663 - 2677 .
CARVALHO E D , ALI A , AMIRI A , et al . Non-stationarities in extra-large-scale massive MIMO [J ] . IEEE Wireless Communications , 2020 , 27 ( 4 ): 74 - 80 .
MAGOAROU L L , CALVEZ A L , PAQUELET S . Massive MIMO channel estimation taking into account spherical waves [C ] // Proceedings of 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) . Piscataway:IEEE Press , 2019 : 1 - 5 .
LIU H B , ZHANG W . A novel near-field localization method based on second order statistics [C ] // Proceedings of 2008 Congress on Image and Signal Processing . Piscataway:IEEE Press , 2008 : 29 - 33 .
ZHANG X F , CHEN W Y , ZHENG W , et al . Localization of near-field sources:a reduced-dimension MUSIC algorithm [J ] . IEEE Communications Letters , 2018 , 22 ( 7 ): 1422 - 1425 .
SHIN H , LEE J H . Capacity of multiple-antenna fading channels:spatial fading correlation,double scattering,and keyhole [J ] . IEEE Transactions on Information Theory , 2003 , 49 ( 10 ): 2636 - 2647 .
ALI A , CARVALHO E D , HEATH R W . Linear receivers in non-stationary massive MIMO channels with visibility regions [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 3 ): 885 - 888 .
LI X R , ZHOU S D , BJÖRNSON E , , et al . Capacity analysis for spatially non-wide sense stationary uplink massive MIMO systems [J ] . IEEE Transactions on Wireless Communications , 2015 , 14 ( 12 ): 7044 - 7056 .
LIU D H , WANG J , LI Y , et al . Location-based visible region recognition in extra-large massive MIMO systems [J ] . IEEE Transactions on Vehicular Technology , 2023 , 72 ( 6 ): 8186 - 8191 .
AMIRI A , ANGJELICHINOSKI M , DE CARVALHO E , et al . Extremely large aperture massive MIMO:low complexity receiver architectures [C ] // Proceedings of 2018 IEEE Globecom Workshops (GC Wkshps) . Piscataway:IEEE Press , 2019 : 1 - 6 .
NISHIMURA O S , MARINELLO J C , ABRÃO T . A grant-based random access protocol in extra-large massive MIMO system [J ] . IEEE Communications Letters , 2020 , 24 ( 11 ): 2478 - 2482 .
BRUZA ALVES T A , ABRÃO T . Improving random access with NOMA in mMTC XL-MIMO [C ] // Proceedings of 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring) . Piscataway:IEEE Press , 2023 : 1 - 5 .
HAN Y , JIN S , WEN C K , et al . Channel estimation for extremely large-scale massive MIMO systems [J ] . IEEE Wireless Communications Letters , 2020 , 9 ( 5 ): 633 - 637 .
RODRIGUES V C , AMIRI A , ABRÃO T , et al . Low-complexity distributed XL-MIMO for multiuser detection [C ] // Proceedings of 2020 IEEE International Conference on Communications Workshops (ICC Workshops) . Piscataway:IEEE Press , 2020 : 1 - 6 .
LI N X , WEI Z X , YANG H W , et al . Hybrid precoding for mmWave massive MIMO systems with partially connected structure [J ] . IEEE Access , 2017 : 15142 - 15151 .
UBIALI G A , MARINELLO J C , ABRÃO T . Energy-efficient flexible and fixed antenna selection methods for XL-MIMO systems [J ] . AEU-International Journal of Electronics and Communications , 2021 ( 130 ): 153568 .
DE SOUZA J H I , AMIRI A , ABRÃO T , , et al . Quasi-distributed antenna selection for spectral efficiency maximization in subarray switching XL-MIMO systems [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 7 ): 6713 - 6725 .
GAO X Y , DAI L L , HAN S F , et al . Energy-efficient hybrid analog and digital precoding for MmWave MIMO systems with large antenna arrays [J ] . IEEE Journal on Selected Areas in Communications , 2016 , 34 ( 4 ): 998 - 1009 .
YAN L F , HAN C , YUAN J H . A dynamic array of sub-array architecture for hybrid precoding in the millimeter wave and terahertz bands [C ] // Proceedings of 2019 IEEE International Conference on Communications Workshops (ICC Workshops) . Piscataway:IEEE Press , 2019 : 1 - 5 .
PARK S , ALKHATEEB A , HEATH R W . Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems [J ] . IEEE Transactions on Wireless Communications , 2017 , 16 ( 5 ): 2907 - 2920 .
YANG F , WANG J B , CHENG M , et al . A partially dynamic subarrays structure for wideband mmWave MIMO systems [J ] . IEEE Transactions on Communications , 2020 , 68 ( 12 ): 7578 - 7592 .
ZHANG Z L , WU X Y , LIU D P . Joint precoding and combining design for hybrid beamforming systems with subconnected structure [J ] . IEEE Systems Journal , 2020 , 14 ( 1 ): 184 - 195 .
IIMORI H , TAKAHASHI T , ISHIBASHI K , et al . Joint activity and channel estimation for extra-large MIMO systems [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 9 ): 7253 - 7270 .
PENG J Y , WANG Y H . Fractional Fourier transform based channel estimation in XL-MIMO systems [C ] // Proceedings of 2023 3rd International Conference on Neural Networks,Information and Communication Engineering (NNICE) . Piscataway:IEEE Press , 2023 : 400 - 404 .
AMIRI A , MANCHÓN C N , DE CARVALHO E . Uncoordinated and decentralized processing in extra-large MIMO arrays [J ] . IEEE Wireless Communications Letters , 2022 , 11 ( 1 ): 81 - 85 .
CROISFELT V , ABRÃO T , AMIRI A , et al . Decentralized design of fast iterative receivers for massive MIMO with spatial non-stationarities [C ] // Proceedings of 2021 55th Asilomar Conference on Signals,Systems,and Computers . Piscataway:IEEE Press , 2022 : 1242 - 1249 .
AMIRI A , REZAIE S , MANCHÓN C N , , et al . Distributed receiver processing for extra-large MIMO arrays:a message passing approach [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 4 ): 2654 - 2667 .
SHAHRAKI A , ABBASI M , PIRAN M J , et al . A comprehensive survey on 6G networks:applications,core services,enabling technologies,and future challenges [J ] . arXiv preprint , 2021 ,arXiv:2101.12475.
ALWIS C D , KALLA A , PHAM Q V , et al . Survey on 6G frontiers:trends,applications,requirements,technologies and future research [J ] . IEEE Open Journal of the Communications Society , 2021 ( 2 ): 836 - 886 .
0
浏览量
391
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构