浏览全部资源
扫码关注微信
1. 湖州师范学院信息工程学院,浙江 湖州 313000
2. 辽宁师范大学计算机与信息技术学院,辽宁 大连 116081
[ "张永(1975- ),男,博士,湖州师范学院教授、博士生导师,辽宁师范大学计算机与信息技术学院教授,主要研究方向为数据挖掘、智能计算、情感计算" ]
[ "刘昊双(1996- ),女,辽宁师范大学计算机与信息技术学院硕士生,主要研究方向为数据挖掘、机器学习" ]
[ "章琪(1999- ),女,辽宁师范大学计算机与信息技术学院硕士生,主要研究方向为机器学习、智能计算" ]
[ "刘文哲(1983- ),女,博士,湖州师范学院讲师,主要研究方向为多视角学习、深度学习" ]
网络出版日期:2024-01,
纸质出版日期:2024-01-20
移动端阅览
张永, 刘昊双, 章琪, 等. 基于特征校正的多对抗域适应方法[J]. 电信科学, 2024,40(1):71-82.
Yong ZHANG, Haoshuang LIU, Qi ZHANG, et al. Multi-adversarial domain adaptation method based on feature correction[J]. Telecommunications science, 2024, 40(1): 71-82.
张永, 刘昊双, 章琪, 等. 基于特征校正的多对抗域适应方法[J]. 电信科学, 2024,40(1):71-82. DOI: 10.11959/j.issn.1000-0801.2024014.
Yong ZHANG, Haoshuang LIU, Qi ZHANG, et al. Multi-adversarial domain adaptation method based on feature correction[J]. Telecommunications science, 2024, 40(1): 71-82. DOI: 10.11959/j.issn.1000-0801.2024014.
领域自适应可以通过对齐源域和目标域的分布将有标签的源域信息迁移到没有标签但相关的目标域。然而,现有的大多数方法仅对源域和目标域的低层特征分布进行对齐,无法捕获样本中的细粒度信息。基于此,提出了一种基于特征校正的多对抗域适应方法。该方法在引入注意力机制以突出可迁移区域的基础上,通过部署特征校正模块对齐两个域之间的高级特征分布,进一步缩小域差异。此外,为了避免单个分类器过度拟合其自身的噪声伪标签,还提出了双分类器协同训练,并利用图神经网络特征聚合的特性生成更精准的源域标签。在3个迁移学习基准数据集上的大量实验证明所提方法的有效性。
Domain adaptation can transfer labeled source domain information to an unlabeled but related target domain by aligning the distribution of source domain and target domain.However
most existing methods only align the low-level feature distributions of the source and target domains
failing to capture fine-grained information within the samples.To address this limitation
a feature correction-based multi-adversarial domain adaptation method was proposed.An attention mechanism to highlight transferable regions was introduced in this method and a feature correction module was deployed to align the high-level feature distributions between the two domains
further reducing domain discrepancies.Additionally
to prevent individual classifiers from overfitting their own noisy pseudo-labels
dual classifier co-training was proposed and the feature aggregation property of graph neural networks was utilized to generate more accurate source domain labels.Extensive experiments on three benchmark datasets for transfer learning demonstrate the effectiveness of the proposed method.
PAN S J , YANG Q . A survey on transfer learning [J ] . IEEE Tran sactions on Knowledge and Data Engineering , 2010 , 22 ( 10 ): 1345 - 1359 .
ZHUANG F , QI Z , DUAN K , et al . A comprehensive survey on transfer learning [J ] . Proceedings of the IEEE , 2021 , 109 ( 1 ): 43 - 76 .
LONG M S , CAO Y , WANG J M , et al . Learning transferable features with deep adaptation networks [C ] // Proceedings of the Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37 . New York:ACM Press , 2015 : 97 - 105 .
LONG M S , CAO Z J , WANG J M , et al . Conditional adversarial domain adaptation [C ] // Proceedings of the Proceedings of the 32nd International Conference on Neural Information Processing Systems . New York:ACM Press , 2018 : 1647 - 1657 .
KANG G L , JIANG L , YANG Y , et al . Contrastive adaptation network for unsupervised domain adaptation [C ] // Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2019 : 4888 - 4897 .
MA A , LI J J , LU K , et al . Adversarial entropy optimization for unsupervised domain adaptation [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2022 , 33 ( 11 ): 6263 - 6274 .
PEI Z , CAO Z , LONG M , et al . Multi-adversarial domain adaptation [C ] // Proceedings of the AAAI Conference on Artificial Intelligence . New York:ACM Press , 2018 : 3934 - 3941 .
YAN H L , DING Y K , LI P H , et al . Mind the class weight bias:weighted maximum mean discrepancy for unsupervised domain adaptation [C ] // Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2017 : 945 - 954 .
田磊 , 唐永强 , 张文生 . 两阶段领域自适应学习 [J ] . 模式识别与人工智能 , 2019 , 32 ( 9 ): 773 - 784 .
TIAN L , TANG Y Q , ZHANG W S . Two stage domain adaptation learning [J ] . Pattern Recognition and Artificial Intelligence , 2019 , 32 ( 9 ): 773 - 784 .
蔡瑞初 , 李嘉豪 , 郝志峰 . 基于类内最大均值差异的无监督领域自适应算法 [J ] . 计算机应用研究 , 2020 , 37 ( 8 ): 2371 - 2375 .
CAI R C , LI J H , HAO Z F . Unsupervised domain adaptive algorithm with intra-class maximum mean discrepancy [J ] . Application Research of Computers , 2020 , 37 ( 8 ): 2371 - 2375 .
SUN B C , FENG J S , SAENKO K . Return of frustratingly easy domain adaptation [C ] // Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence . New York:ACM Press , 2016 : 2058 - 2065 .
YOSINSKI J , CLUNE J , BENGIO Y , et al . How transferable are features in deep neural networks [J ] . Advances in Neural Information Processing Systems , 2014 :27.
SUN B C , SAENKO K . Deep CORAL:correlation alignment for deep domain adaptation [C ] // European Conference on Computer Vision . Cham:Springer , 2016 : 443 - 450 .
ZHU Y C , ZHUANG F Z , WANG J D , et al . Deep subdomain adaptation network for image classification [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2021 , 32 ( 4 ): 1713 - 1722 .
LI S , LIU C , LIN Q , et al . Domain conditioned adaptation network [C ] // Proceedings of the AAAI Conference on Artificial Intelligence . Washington:AAAI Press , 2020 : 11386 - 11393 .
GANIN Y , USTINOVA E , AJAKAN H , et al . Domain-adversarial training of neural networks [J ] . Journal of Machine Learning Research , 2016 , 17 ( 1 ): 2096 - 2130 .
SAITO K , WATANABE K , USHIKU Y , et al . Maximum classifier discrepancy for unsupervised domain adaptation [C ] // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2018 : 3723 - 3732 .
WANG F , JIANG M Q , QIAN C , et al . Residual attention network for image classification [C ] // Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2017 : 6450 - 6458 .
KANG G , ZHENG L , YAN Y , et al . Deep adversarial attention alignment for unsupervised domain adaptation:The benefit of target expectation maximization [C ] // Proceedings of the European Conference on Computer Vision . New York:ACM Press , 2018 : 420 - 436 .
WANG X , LI L , YE W , et al . Transferable attention for domain adaptation [C ] // Proceedings of the AAAI Conference on Artificial Intelligence . Washington:AAAI Press , 2019 : 5345 - 5352 .
ESTRACH J B , ZAREMBA W , SZLAM A , et al . Spectral networks and deep locally connected networks on graphs [C ] // Proceedings of the 2nd International Conference on Learning Representations .[S.l.:s.n. ] , 2014 .
LUO Y , WANG Z , HUANG Z , et al . Progressive graph learning for open-set domain adaptation [C ] // Proceedings of the 37th International Conference on Machine Learning .[S.l.:s.n. ] , 2020 : 6468 - 6478 .
LUO Y D , WANG Z J , HUANG Z , et al . Progressive graph learning for open-set domain adaptation [C ] // Proceedings of the Proceedings of the 37th International Conference on Machine Learning.New York:ACM Press .[S.l:s.n. ] , 2020 : 6468 - 6478 .
YANG X , DENG C , LIU T L , et al . Heterogeneous graph attention network for unsupervised multiple-target domain adaptation [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2022 , 44 ( 4 ): 1992 - 2003 .
SAENKO K , KULIS B , FRITZ M , et al . Adapting visual category models to new domains [C ] // Proceedings of the 11th European Conference on Computer vision:Part IV . New York:ACM Press , 2010 : 213 - 226 .
LONG M , CAO Y , CAO Z , et al . Transferable representation learning with deep adaptation networks [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2018 , 41 ( 12 ): 3071 - 3085 .
VENKATESWARA H , EUSEBIO J , CHAKRABORTY S , et al . Deep hashing network for unsupervised domain adaptation [C ] // Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2017 : 5385 - 5394 .
DENG J , DONG W , SOCHER R , et al . ImageNet:a large-scale hierarchical image database [C ] // Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2009 : 248 - 255 .
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C ] // Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2016 : 770 - 778 .
LONG M S , ZHU H , WANG J M , et al . Deep transfer learning with joint adaptation networks [C ] // Proceedings of the Proceedings of the 34th International Conference on Machine LearningVolume 70 . New York:ACM Press , 2017 : 2208 - 2217 .
LI M X , ZHAI Y M , LUO Y W , et al . Enhanced transport distance for unsupervised domain adaptation [C ] // Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2020 : 13933 - 13941 .
HUANG J X , GUAN D Y , XIAO A R , et al . Category contrast for unsupervised domain adaptation in visual tasks [C ] // Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2022 : 1193 - 1204 .
CHEN M , ZHAO S , LIU H , et al . Adversarial-learned loss for domain adaptation [C ] // Proceedings of the AAAI Conference on Artificial Intelligence . Washington:AAAI Press , 2020 : 3521 - 3528 .
0
浏览量
48
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构