浏览全部资源
扫码关注微信
中国移动通信有限公司研究院,北京 100053
[ "马帅(1981- ),男,中国移动通信有限公司研究院高级工程师、物联网技术与应用研究所副所长,主要研究方向为5G/6G、无源物联网、工业互联网、车联网、先进感知等。" ]
[ "杨博涵(1990- ),男,现就职于中国移动通信有限公司研究院,CCSA工业互联网委员会5G+工业互联网子组副组长,主要研究方向为行业通信及工业互联网。" ]
[ "羊峰波(1998- ),男,中国移动通信有限公司研究院研究员,主要研究方向为5G、无源物联网。" ]
[ "韦安妮(1984- ),女,现就职于中国移动通信有限公司研究院,主要研究方向为物联网技术和5G垂直行业解决方案。" ]
[ "郑成龙(1996‒ ),男,中国移动通信有限公司研究院研究员,主要研究方向为5G、确定性网络、工业网络和5G+行业融合应用解决方案。" ]
收稿日期:2023-10-13,
修回日期:2024-02-10,
纸质出版日期:2024-05-20
移动端阅览
马帅,杨博涵,羊峰波等.5G多路冗余传输技术综述[J].电信科学,2024,40(05):1-22.
MA Shuai,YANG Bohan,YANG Fengbo,et al.Overview of 5G multi-channel redundant transmission technology[J].Telecommunications Science,2024,40(05):1-22.
马帅,杨博涵,羊峰波等.5G多路冗余传输技术综述[J].电信科学,2024,40(05):1-22. DOI: 10.11959/j.issn.1000-0801.2024026.
MA Shuai,YANG Bohan,YANG Fengbo,et al.Overview of 5G multi-channel redundant transmission technology[J].Telecommunications Science,2024,40(05):1-22. DOI: 10.11959/j.issn.1000-0801.2024026.
当前社会正处在科技高速发展的时代,无线通信技术的迅猛发展不仅推动了工业、交通、医疗等领域的数字化转型,也在不断升级无线通信网络,试图从有线向无线化迈进。随着计算机技术和无线通信技术的不断演进,许多应用场景要求在无线环境下实现高可靠传输。特别是面向现代工业自动化、自动驾驶等领域,对高可靠传输的需求更为迫切。深入研究了作为当前业界最先进的无线传输技术之一的5G技术,重点关注了5G系统内多路冗余传输技术。综述了该技术在应用背景、技术原理和技术路线方面的关键要点。在应用背景方面,突出了5G冗余传输在现代工业自动化、自动驾驶等无线场景中的实际应用需求。在技术原理方面,有针对性地从业务端到端多路冗余传输对有关研究进行归纳和梳理,重点分析5G多路冗余传输的技术原理,解释了其在提高传输可靠性方面的独特优势。在技术路线方面,综合考虑了5G多路冗余传输技术的发展方向和各种可能的实施路径。最后,指出5G多路冗余传输技术未来发展的困难和挑战,并探讨其未来发展趋势,以更好地理解5G冗余传输技术在无线通信领域的关键作用和前景。
At present
the society is in an era of rapid development of science and technology
and the rapid development of wireless communication technology has not only promoted the digital transformation of industry
transportation
medical and other fields
but also continuously upgraded wireless communication networks
trying to move from wired to wireless. With the continuous evolution of computer technology and wireless communication technology
many application scenarios require highly reliable transmission in a wireless environment. Especially in the fields of modern industrial automation and autonomous driving
the demand for highly reliable transmission is more urgent. 5G technology was delved into
which was one of the most advanced wireless transmission technologies in the industry
focusing on multi-channel redundant transmission technology within 5G systems. The key points of the technology in terms of application background
technical principles and technical route were summarized. In terms of application background
the practical application requirements of 5G redundant transmission in wireless scenarios such as modern industrial automation and autonomous driving were highlighted. In terms of technical principles
the relevant research was summarized and sorted out from the end-to-end multi-channel redundant transmission of services
the analysis of the technical principles of 5G multi-channel redundant transmission were focused on
and its unique advantages in improving transmission reliability were explained. In terms of technical routes
the development direction of 5G multi-channel redundant transmission technology and various possible implementation paths were comprehensively considered. Finally
the difficulties and challenges of the future development of 5G multi-channel redundant transmission technology were pointed out
and its future development trend was discussed
so as to better understand the key role and prospect of 5G redundant transmission technology in the field of wireless communication.
TEBE P I , WEN G J , LI J , et al . 5G-enabled medical data transmission in mobile hospital systems [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 15 ): 13679 - 13693 .
ANSARI J , ANDERSSON C , DE BRUIN P , et al . Performance of 5G trials for industrial automation [J ] . Electronics , 2022 , 11 ( 3 ): 412 .
YANG Y , HUA K . Emerging technologies for 5G-enabled vehicular networks [J ] . IEEE Access , 2019 ( 7 ): 181117 - 181141 .
伏玉笋 , 杨根科 . 无线超可靠低时延通信: 关键设计分析与挑战 [J ] . 通信学报 , 2020 , 41 ( 8 ): 187 - 203 .
FU Y S , YANG G K . Wireless ultra-reliable and low-latency communication: key design analysis and challenge [J ] . Journal on Communications , 2020 , 41 ( 8 ): 187 - 203 .
KORZENIEWSKA E , KRAWCZYK A . 5G technology as the successive stage in the history of wireless telecommunication [C ] // Proceedings of the 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES) . Piscataway : IEEE Press , 2019 : 470 - 473 .
3GPP. System architecture for the 5G system; stage 2: TS 23.501 [S ] . 2019 .
SILVEIRA L B D , DE RESENDE H C , BOTH C B , et al . Tutorial on communication between access networks and the 5G core [J ] . Computer Networks , 2022 ( 216 ): 109301 .
HURTADO SÁNCHEZ J A , CASILIMAS K , CAICEDO RENDON O M . Deep reinforcement learning for resource management on network slicing: a survey [J ] . Sensors , 2022 , 22 ( 8 ): 3031 .
杨峰义 , 谢伟良 , 张建敏 . 5G无线网络及关键技术 [J ] . 通信学报 , 2017 , 38 ( 3 ): 184 .
YANG F Y , XIE W L , ZHANG J M . 5G wireless network and key technologies [J ] . Journal on Communications , 2017 , 38 ( 3 ): 184 .
孙韶辉 , 高秋彬 , 杜滢 , 等 . 第5代移动通信系统的设计与标准化进展 [J ] . 北京邮电大学学报 , 2018 , 41 ( 5 ): 26 - 43 .
SUN S H , GAO Q B , DU Y , et al . Overview on the progress of design and standardization of the fifth generation of mobile communications system [J ] . Journal of Beijing University of Posts and Telecommunications , 2018 , 41 ( 5 ): 26 - 43 .
裴旭明 , 贾建鑫 , 钱骅 , 等 . 5G双连接场景下的低传输时延切换机制 [J ] . 通信学报 , 2019 , 40 ( 4 ): 212 - 222 .
PEI X M , JIA J X , QIAN H , et al . Low latency handover scheme for 5G dual-connectivity scenario [J ] . Journal on Communications , 2019 , 40 ( 4 ): 212 - 222 .
邵延峰 . URLLC中PDCP数据复制传输及增强研究 [J ] . 移动通信 , 2021 , 45 ( 3 ): 44 - 47 .
SHAO Y F . Research on PDCP data duplication transmission and enhancement in URLLC [J ] . Mobile Communications , 2021 , 45 ( 3 ): 44 - 47 .
黄韬 , 李鹏翔 . URLLC关键技术和网络适应性分析 [J ] . 移动通信 , 2020 , 44 ( 2 ): 25 - 29 .
HUANG T , LI P X . Analysis of URLLC key technologies and network adaptability [J ] . Mobile Communications , 2020 , 44 ( 2 ): 25 - 29 .
黄丘林 , 史小卫 . MIMO系统中分集增益和空间复用增益的折衷关系 [J ] . 电子与信息学报 , 2007 , 29 ( 3 ): 681 - 685 .
HUANG Q L , SHI X W . Tradeoff between diversity gain and multiplexing gain in MIMO systems [J ] . Journal of Electronics & Information Technology , 2007 , 29 ( 3 ): 681 - 685 .
王世练 , 胡登鹏 , 张智力 , 等 . MIMO 多径衰落信道下的多载波混沌键控混沌通信 [J ] . 国防科技大学学报 , 2015 , 37 ( 2 ): 52 - 57 .
WANG S L , HU D P , ZHANG Z L , et al . Multi-carrier chaotic shift keying chaotic communications under MIMO multipath fading channels [J ] . Journal of National University of Defense Technology , 2015 , 37 ( 2 ): 52 - 57 .
任伟利 , 樊昌信 . 时分双工方式下的F-PRMA协议及其性能分析 [J ] . 电子学报 , 1998 , 26 ( 10 ): 23 - 27 .
REN W L , FAN C X . Performance analysis of frame-based PRMA protocol [J ] . Acta Electronica Sinica , 1998 , 26 ( 10 ): 23 - 27 .
PAHLEVAN M , OBERMAISSER R . Redundancy management for safety-critical applications with time sensitive networking [C ] // Proceedings of the 2018 28th International Telecommunication Networks and Applications Conference (ITNAC) . Piscataway : IEEE Press , 2018 : 1 - 7 .
YAO Z C , CAI Y P , LI T C . Multiple cascaded preconfigured cycles for the FRER mechanism in time-sensitive networking [C ] // Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops) . Piscataway : IEEE Press , 2021 : 1 - 6 .
ERGENÇ D , FISCHER M . On the reliability of IEEE 802.1CB FRER [C ] // Proceedings of the IEEE INFOCOM 2021 - IEEE Conference on Computer Communications . Piscataway : IEEE Press , 2021 : 1 - 10 .
ALI SYED A , AYAZ S , LEINMÜLLER T , et al . Network coding based fault-tolerant dynamic scheduling and routing for In-vehicle networks [J ] . Journal of Network and Systems Management , 2023 , 31 ( 1 ): 27 .
WU K X , ZHANG J W , JI Y F . Redundant routing provision in a FlexE-over-WDM network based on segment frame replication and elimination [C ] // Proceedings of the 2021 17th International Conference on the Design of Reliable Communication Networks (DRCN) . Piscataway : IEEE Press , 2021 : 1 - 6 .
FENG Z W , GU Z H , YU H C , et al . Online rerouting and rescheduling of time-triggered flows for fault tolerance in time-sensitive networking [J ] . IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems , 2022 , 41 ( 11 ): 4253 - 4264 .
时书锋 , 于游洋 . 多接入、无线、有线融合架构演进及流量调度机制 [J ] . 电信科学 , 2022 , 38 ( 4 ): 146 - 155 .
SHI S F , YU Y Y . Multi-access, wireless and wired convergence architecture evolution and traffic scheduling mechanism [J ] . Telecommunications Science , 2022 , 38 ( 4 ): 146 - 155 .
WU H J , FERLIN S , CASO G , et al . A survey on multipath transport protocols towards 5G access traffic steering, switching and splitting [J ] . IEEE Access , 2021 ( 9 ): 164417 - 164439 .
COGALAN T , KHEIRKHAH M , PATANI K , et al . Enhanced access traffic steering splitting switching with utility-based decisioning [C ] // Proceedings of the 2022 IEEE Conference on Standards for Communications and Networking (CSCN) . Piscataway : IEEE Press , 2022 : 138 - 143 .
BA X R , JIN L B , LI Z R , et al . Multiservice-based traffic scheduling for 5G access traffic steering, switching and splitting [J ] . Sensors , 2022 , 22 ( 9 ): 3285 .
CHOI H , HAN D , NA W . Research challenge on MPTCP in 5G/6G networks [C ] // Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC) . Piscataway : IEEE Press , 2022 : 856 - 858 .
CHAO L M , WU C , YOSHINAGA T , et al . A brief review of multipath TCP for vehicular networks [J ] . Sensors , 2021 , 21 ( 8 ): 2793 .
CAO Y , LIU Q , ZUO Y , et al . Receiver-centric buffer blocking-aware multipath data distribution in MPTCP-based heterogeneous wireless networks [J ] . KSII Transactions on Internet & Information Systems , 2016 , 10 ( 10 ): 4642 - 4660 .
LIU S , HUANG J W , JIANG W C , et al . Reducing traffic burstiness for MPTCP in data center networks [J ] . Journal of Network and Computer Applications , 2021 ( 192 ): 103169 .
NGUYEN K , GOLAM KIBRIA M , ISHIZU K , et al . An approach to reinforce multipath TCP with path-aware information [J ] . Sensors , 2019 , 19 ( 3 ): 476 .
CAO Y L , JI R W , JI L J , et al . MPTCP-meLearning: a multi-expert learning-based MPTCP extension to enhance multipathing robustness against network attacks [J ] . IEICE Transactions on Information and Systems , 2021 , 104 ( 11 ): 1795 - 1804 .
YANG B , SHEN D , ZHANG J X , et al . Towards the full extensibility of multipath TCP with eMPTCP [C ] // Proceedings of the 2022 IEEE 30th International Conference on Network Protocols (ICNP) . Piscataway : IEEE Press , 2022 : 1 - 11 .
WANG W , ZHOU L , SUN Y . Improving multipath TCP for latency sensitive flows in the cloud [C ] // Proceedings of the 2016 5th IEEE International Conference on Cloud Networking (Cloudnet) . Piscataway : IEEE Press , 2016 : 45 - 50 .
YANG W J , DONG P P , TANG W S , et al . A MPTCP scheduler for web transfer [J ] . Computers , Materials & Continua, 2018 , 57 ( 2 ): 205 - 222 .
LIU Y B , QIN X W , ZHU T , et al . Improve MPTCP with SDN: from the perspective of resource pooling [J ] . Journal of Network and Computer Applications , 2019 , 141 ( C ): 73 - 85 .
TONG V , TRAN H A , SOUIHI S , et al . Empirical study for Dynamic Adaptive Video Streaming Service based on Google Transport QUIC protocol [C ] // Proceedings of the 2018 IEEE 43rd Conference on Local Computer Networks (LCN) . Piscataway : IEEE Press , 2018 : 343 - 350 .
MARX R , LAMOTTE W , REYNDERS J , et al . Towards QUIC debuggability [C ] // Proceedings of the Workshop on the Evolution, Performance, and Interoperability of QUIC . New York : ACM Press , 2018 : 1 - 7 .
YU A , BENSON T A . Dissecting performance of production QUIC [C ] // Proceedings of the Proceedings of the Web Conference 2021 . New York : ACM Press , 2021 : 1157 - 1168 .
CAO X D , ZHAO S R , ZHANG Y Q . 0-RTT attack and defense of QUIC protocol [C ] // Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps) . Piscataway : IEEE Press , 2019 : 1 - 6 .
VOLODINA E , RATHGEB E P . Flow control in the context of the multiplexed transport protocol QUIC [C ] // Proceedings of the 2020 IEEE 45th Conference on Local Computer Networks (LCN) . Piscataway : IEEE Press , 2020 : 473 - 478 .
CUI Y , LI T X , LIU C , et al . Innovating transport with QUIC: design approaches and research challenges [J ] . IEEE Internet Computing , 2017 , 21 ( 2 ): 72 - 76 .
VIERNICKEL T , FROEMMGEN A , RIZK A , et al . Multipath QUIC: a deployable multipath transport protocol [C ] // Proceedings of the 2018 IEEE International Conference on Communications (ICC) . Piscataway : IEEE Press , 2018 : 1 - 7 .
SHI X , WANG L , ZHANG F , et al . PStream: priority-based stream scheduling for heterogeneous paths in multipath-QUIC [C ] // Proceedings of the 2020 29th International Conference on Computer Communications and Networks (ICCCN) . Piscataway : IEEE Press , 2020 : 1 - 8 .
WANG J , GAO Y F , XU C R . A multipath QUIC scheduler for mobile HTTP/2 [C ] // Proceedings of the 3rd Asia-Pacific Workshop on Networking . New York : ACM Press , 2019 : 43 - 49 .
XING Y , XUE K , ZHANG Y , et al . A stream-aware MPQUIC scheduler for HTTP traffic in mobile networks [J ] . IEEE Transactions on Wireless Communications , 2022 , 22 ( 4 ): 2775 - 2788 .
WU H J , ALAY Ö , BRUNSTROM A , et al . Peekaboo: learning-based multipath scheduling for dynamic heterogeneous environments [J ] . IEEE Journal on Selected Areas in Communications , 2020 , 38 ( 10 ): 2295 - 2310 .
JONGLEZ B , HEUSSE M , GAUJAL B . SRPT-ECF: challenging Round-Robin for stream-aware multipath scheduling [C ] // Proceedings of the 2020 IFIP Networking Conference (Networking) . Piscataway : IEEE Press , 2020 : 719 - 724 .
SHI X , WANG L , ZHANG F , et al . FStream: flexible stream scheduling and prioritizing in multipath-QUIC [C ] // Proceedings of the 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) . Piscataway : IEEE Press , 2019 : 921 - 924 .
梁辉 , 韩潇 , 李福昌 . 5G URLLC端到端关键技术分析 [J ] . 移动通信 , 2020 , 44 ( 8 ): 12 - 16 .
LIANG H , HAN X , LI F C . Analysis on 5G URLLC end-to-end key technology [J ] . Mobile Communications , 2020 , 44 ( 8 ): 12 - 16 .
许方敏 , 伍丽娇 , 杨帆 , 等 . 时间敏感网络(TSN)及无线TSN技术 [J ] . 电信科学 , 2020 , 36 ( 8 ): 81 - 91 .
XU F M , WU L J , YANG F , et al . Time-sensitive networking (TSN) and wireless TSN technology [J ] . Telecommunications Science , 2020 , 36 ( 8 ): 81 - 91 .
任驰 , 马瑞涛 . 5G核心网uRLLC系统架构及关键技术研究 [J ] . 邮电设计技术 , 2020 ( 9 ): 44 - 48 .
REN C , MA R T . Research on system architecture and key technology of uRLLC in 5G core network [J ] . Designing Techniques of Posts and Telecommunications , 2020 ( 9 ): 44 - 48 .
AHMED A M , PATEL A , ALI KHAN M Z . Reliability enhancement by PDCP duplication and combining for next generation networks [C ] // Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring) . Piscataway : IEEE Press , 2021 : 1 - 5 .
AIJAZ A . Packet duplication in dual connectivity enabled 5G wireless networks: overview and challenges [J ] . IEEE Communications Standards Magazine , 2019 , 3 ( 3 ): 20 - 28 .
KHOSHNEVISAN M , JAYASINGHE K , CHEN R H , et al . Enhanced reliability and capacity with multi-TRP transmission [J ] . IEEE Communications Standards Magazine , 2022 , 6 ( 1 ): 13 - 19 .
VARATHARAAJAN S , GROSSMANN M , DEL GALDO G . 5G new radio physical downlink control channel reliability enhancements for multiple transmission-reception-point communications [J ] . IEEE Access , 2022 ( 10 ): 97394 - 97407 .
ALI SYED A , AYAZ S , LEINMÜLLER T , et al . Fault-tolerant dynamic scheduling and routing for TSN based In-vehicle networks [C ] // Proceedings of the 2021 IEEE Vehicular Networking Conference (VNC) . Piscataway : IEEE Press , 2021 : 72 - 75 .
KANG Y , KIM C . A multi-access session management for ATSSS support in 5G network [C ] // Proceedings of the 2019 25th Asia-Pacific Conference on Communications (APCC) . Piscataway : IEEE Press , 2019 : 409 - 412 .
BA X R , JIN L B , LI Z , et al . Performance evaluation of multi-access based on ATSSS rules [C ] // Proceedings of the 2022 International Conference on Culture-Oriented Science and Technology (CoST) . Piscataway : IEEE Press , 2022 : 390 - 394 .
GINTHÖR D , GUILLAUME R , VON HOYNINGEN-HUENE J , et al . End-to-end optimized joint scheduling of converged wireless and wired time-sensitive networks [C ] // Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) . Piscataway : IEEE Press , 2020 : 222 - 229 .
ROST P M , KOLDING T . Performance of integrated 3GPP 5G and IEEE TSN networks [J ] . IEEE Communications Standards Magazine , 2022 , 6 ( 2 ): 51 - 56 .
0
浏览量
12
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构