浏览全部资源
扫码关注微信
1.杭州电子科技大学机械工程学院,浙江 杭州 310018
2.杭州电子科技大学通信工程学院,浙江 杭州 310018
[ "陈梦迪(1998- ),女,杭州电子科技大学机械工程学院硕士生,主要研究方向为信号处理。" ]
[ "张巍(1985- ),男,杭州电子科技大学机械工程学院特聘副研究员,主要研究方向为信号分析与处理。" ]
[ "沈雷(1979- ),男,博士,杭州电子科技大学通信工程学院教授、博士生导师,主要研究方向为数字图像处理、模式识别。" ]
[ "雷富强(1981- ),男,杭州电子科技大学机械工程学院特聘研究员、博士生导师,主要研究方向为智能装备与智能系统。" ]
[ "张佳飞(1998- ),男,杭州电子科技大学通信工程学院硕士生,主要研究方向为信号处理。" ]
收稿日期:2024-07-05,
修回日期:2024-09-05,
纸质出版日期:2024-09-20
移动端阅览
陈梦迪,张巍,沈雷等.基于时频和双谱特征融合的DA-ResNeXt50射频指纹识别方法[J].电信科学,2024,40(09):54-65.
CHEN Mengdi,ZHANG Wei,SHEN Lei,et al.DA-ResNeXt50 method for radio frequency fingerprint identification based on time-frequency and bispectral feature fusion[J].Telecommunications Science,2024,40(09):54-65.
陈梦迪,张巍,沈雷等.基于时频和双谱特征融合的DA-ResNeXt50射频指纹识别方法[J].电信科学,2024,40(09):54-65. DOI: 10.11959/j.issn.1000-0801.2024208.
CHEN Mengdi,ZHANG Wei,SHEN Lei,et al.DA-ResNeXt50 method for radio frequency fingerprint identification based on time-frequency and bispectral feature fusion[J].Telecommunications Science,2024,40(09):54-65. DOI: 10.11959/j.issn.1000-0801.2024208.
针对射频指纹识别中单一特征无法全面表示信号的完整性,且类间特征差异较小从而限制识别准确率等问题,提出了一种基于时频和双谱特征融合的DA-ResNeXt50(ResNeXt50 with dense connection and ACBlock)射频指纹识别方法。首先,对采集到的不同设备的信号分别进行短时傅里叶变换(short-time Fourier transform,STFT)和双谱变换,将得到的图像二值化处理并拼接,综合利用两种变换分别在时频域和高阶统计特性上的优势,更全面地提取和表征不同设备的射频指纹特征;然后,提出了DA-ResNeXt50网络模型,借鉴密集连接思想,使四层残差单元每一层都与前面所有层直接相连,促进了特征的复用和传递,能更好地捕捉类间细微差异;最后,使用非对称卷积模块(asymmetric convolution block,ACBlock)替换模型最后一层残差单元的3×3卷积,可以有效地增加网络的感受野,增强卷积核的骨架部分,从而提高射频指纹识别性能。实验结果表明,相较于使用单一特征提取方法,提出的特征融合方法的性能有较大的提升,改进后的模型与多种经典模型相比,具有较高的识别精度。
To address the problems that a single feature in radio frequency fingerprint recognition could not fully represent the integrity of the signal and that the differences between features of different classes were small
which limited the recognition accuracy
a DA-ResNeXt50 (ResNeXt50 with dense connection and ACBlock) method for radio frequency fingerprint identification based on time-frequency and bi-spectral feature fusion was proposed. Firstly
short-time Fourier transform (STFT) and bi-spectrum transform were performed separately on the signals collected from different devices
the resulting images were bi-narized and then concatenated. By taking advantage of the advantages of both transformations in the time-frequency domain and high-order statistical characteristics respectively
the radio frequency fingerprint features of different devices can be extracted and characterized more comprehensively. Then
the DA-ResNeXt50 network model was proposed. Borrowing from the idea of dense connection
each layer of the four-layer residual unit was directly connected to all previous layers
promoting feature reuse and transmission
which enabled it to better capture subtle differences between classes. Finally
the asymmetric convolution block (ACBlock) was used to replace the 3×3 convolution in the last residual unit of the model. This effectively increased the receptive field of the network and enhanced the skeleton part of the convolutional kernel
thereby improving the performance of radio frequency fingerprint recognition. The experimental results show that compared with that of using a single feature extraction method
the proposed feature fusion approach significantly improves performance. Compared with various classical models
the improved model has higher recognition accuracy.
张振 , 贾济铖 , 康健 , 等 . 射频指纹识别技术方法综述 [J ] . 无线电通信技术 , 2021 , 47 ( 3 ): 249 - 258 .
ZHANG Z , JIA J C , KANG J , et al . Overview of RF Fingerprint identification technology methods [J ] . Radio Communications Technology , 2021 , 47 ( 3 ): 249 - 258 .
张晔 . 基于深度学习的射频指纹识别系统设计与实现 [D ] . 北京 : 中国科学院大学(中国科学院国家空间科学中心) , 2021 .
ZHANG Y . Design and implementation of RF fingerprint identification system based on deep learning [D ] . Beijing : National Space Science Center, Chinese Academy of Sciences , 2021 .
邓涵方 . 基于深度学习的射频指纹识别技术研究 [D ] . 桂林 : 桂林电子科技大学 , 2022 .
DENG H F . Research on RF fingerprint identification technology based on deep learning [D ] . Guilin : Guilin University of Electronic Technology , 2022 .
彭林宁 , 胡爱群 , 朱长明 , 等 . 基于星座轨迹图的射频指纹提取方法 [J ] . 信息安全学报 , 2016 , 1 ( 1 ): 50 - 58 .
PENG L N , HU A Q , ZHU C M , et al . Radio fingerprint extraction based on constellation trace figure [J ] . Journal of Cyber Security , 2016 , 1 ( 1 ): 50 - 58 .
李雨珊 , 谢非佚 , 陈松林 , 等 . 适合终端的射频指纹信号特征提取及识别 [J ] . 通信技术 , 2018 , 51 ( 1 ): 63 - 66 .
LI Y S , XIE F Y , CHEN S L , et al . Feature extraction and recognition of radio frequency fingerprint signal suitable for terminal [J ] . Communications Technology , 2018 , 51 ( 1 ): 63 - 66 .
贾济铖 , 齐琳 . 基于双谱的射频指纹提取方法 [J ] . 太赫兹科学与电子信息学报 , 2021 , 19 ( 1 ): 107 - 111 .
JIA J C , QI L . RF fingerprint extraction method based on bispectrum [J ] . Journal of Terahertz Science and Electronic Information Technology , 2021 , 19 ( 1 ): 107 - 111 .
李超群 , 王金明 . 基于短时傅里叶变换的无人机射频指纹分类识别 [J ] . 通信技术 , 2022 , 55 ( 9 ): 1202 - 1207 .
LI C Q , WANG J M . Classification and identification of UAV RF fingerprints based on short-time Fourier transform [J ] . Communications Technology , 2022 , 55 ( 9 ): 1202 - 1207 .
PENG L N , ZHANG J Q , LIU M , et al . Deep learning based RF fingerprint identification using differential constellation trace figure [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 1 ): 1091 - 1095 .
叶文强 , 俞志富 . 基于联合时频辐射源信号识别方法 [J ] . 电子信息对抗技术 , 2018 , 33 ( 5 ): 16 - 19, 50 .
YE W Q , YU Z F . Signal recognition method based on joint time-frequency radiant source [J ] . Electronic Information Warfare Technology , 2018 , 33 ( 5 ): 16 - 19, 50 .
谢跃雷 , 邓涵方 . 基于改进ResNet的射频指纹识别方法 [J ] . 电讯技术 , 2022 , 62 ( 4 ): 416 - 423 .
XIE Y L , DENG H F . A radio frequency fingerprinting identification method based on improved ResNet [J ] . Telecommunication Engineering , 2022 , 62 ( 4 ): 416 - 423 .
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C ] // Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR) . Piscataway : IEEE Press , 2016 : 770 - 778 .
XIE S N , GIRSHICK R , DOLLAR P , et al . Aggregated residual transformations for deep neural networks [C ] // Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2017 : 5987 - 5995 .
马爽 . 基于多特征融合的无线通信设备指纹特征提取及识别 [D ] . 成都 : 电子科技大学 , 2020 .
MA S . Fingerprint feature extraction and identification of wireless communication equipment based on multi-feature fusion [D ] . Chengdu : University of Electronic Science and Technology of China , 2020 .
王小颖 . 电子侦察中的调制识别和身份识别 [D ] . 成都 : 电子科技大学 , 2022 .
WANG X Y . Modulation recognition and identity recognition in electronic reconnaissance [D ] . Chengdu : University of Electronic Science and Technology of China , 2022 .
HUANG G , LIU Z , VAN DER MAATEN L , et al . Densely connected convolutional networks [C ] // Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2017 : 2261 - 2269 .
LI X Y , GUO L , YANG J D , et al . Research on classification of wild mushroom based on feature fusion and attention mechanism [C ] // Proceedings of the 2023 IEEE 6th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) . Piscataway : IEEE Press , 2023 : 114 - 119 .
DING X H , GUO Y C , DING G G , et al . ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks [C ] // Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV) . Piscataway : IEEE Press , 2019 : 1911 - 1920 .
张洁 , 穆静 , 钱智哲 . 改进的ResNeXt50神经网络面部表情识别方法 [J ] . 西安工业大学学报 , 2022 , 42 ( 6 ): 610 - 619 .
ZHANG J , MU J , QIAN Z Z . Facial expression recognition method based on improved ResNeXt50 neural network [J ] . Journal of Xi’an Technological University , 2022 , 42 ( 6 ): 610 - 619 .
杜贵琪 . 基于人工智能的射频指纹识别技术研究 [D ] . 成都 : 电子科技大学 , 2022 .
DU G Q . Research on RF fingerprint identification technology based on artificial intelligence [D ] . Chengdu : University of Electronic Science and Technology of China , 2022 .
SZEGEDY C , LIU W , JIA Y Q , et al . Going deeper with convolutions [C ] // Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2015 : 1 - 9 .
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition [J ] . arXiv e-Prints , 2014 : arXiv: 1409.1556 .
0
浏览量
10
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构