浏览全部资源
扫码关注微信
1.重庆师范大学,重庆 401331
2.杭州电子科技大学,浙江 杭州 310018
[ "黎天送(1987- ),男,博士,重庆师范大学讲师,主要研究方向为图像/视频编码、多视点视频编码、多媒体信号处理、人工智能。" ]
[ "崔少国(1974- ),男,重庆师范大学教授,主要研究方向为大数据与人工智能、计算机视觉(CV)与自然语言处理(NLP)、医学影像智能分析。" ]
[ "刘姝岑(1999- ),女,重庆师范大学硕士生,主要研究方向为3D-HEVC 视频编码、深度学习。" ]
[ "陈艳(2000- ),女,重庆师范大学硕士生,主要研究方向为H.266/VVC视频编码、360°全景视频编码、深度学习。" ]
[ "王鸿奎(1990- ),男,现就职于杭州电子科技大学丽水研究院,主要研究方向为标准视频压缩、感知视频压缩以及智能视频压缩。" ]
收稿日期:2024-03-27,
修回日期:2024-09-11,
纸质出版日期:2024-09-20
移动端阅览
黎天送,刘昊坤,崔少国等.一种基于图神经网络和统计分析的VVC帧内编码快速算法[J].电信科学,2024,40(09):109-122.
LI Tiansong,LIU Haokun,CUI Shaoguo,et al.A fast VVC intra-coding algorithm based on graph neural network and statistical analysis[J].Telecommunications Science,2024,40(09):109-122.
黎天送,刘昊坤,崔少国等.一种基于图神经网络和统计分析的VVC帧内编码快速算法[J].电信科学,2024,40(09):109-122. DOI: 10.11959/j.issn.1000-0801.2024213.
LI Tiansong,LIU Haokun,CUI Shaoguo,et al.A fast VVC intra-coding algorithm based on graph neural network and statistical analysis[J].Telecommunications Science,2024,40(09):109-122. DOI: 10.11959/j.issn.1000-0801.2024213.
多功能视频编码(versatile video coding,VVC)作为最新一代的视频编码标准,通过引入多种高效的编码工具进一步提升了视频编码性能。然而,VVC标准引入了四叉树加多类型树(quadtree plus multi-type tree,QTMT)划分结构,并将帧内预测模式从35种扩展到67种,导致编码复杂度急剧上升。为降低VVC的帧内编码复杂度,首先,提出了一种基于图神经网络的帧内编码单元(coding unit,CU)划分快速算法,该算法利用高效的图神经网络模型直接预测CU的最优划分模式,从而跳过冗余的CU划分遍历。其次,提出了一种基于空间相关性和纹理特征的帧内模式选择快速算法,该算法利用平均方向方差和Sobel梯度算子确定纹理方向,并跳过部分角度预测模式,同时结合预测模式间的相关性精简率失真模式列表。实验结果表明,该算法能够在BDBR(bjontegaard delta bit rate)上升2.29%的代价下,节省64.04%的编码时间。
VVC as the latest generation of video coding standards
further improves video compression quality by introducing a variety of efficient coding tools. However
the VVC standard introduces the QTMT division structure and expands the intra prediction modes from 35 to 67
resulting in a sharp increase in coding complexity. Firstly
a fast algorithm for intra-frame coding unit (CU) division based on graph neural network was proposed
in order to reduce the complexity of intra-frame coding of VVC. An efficient graph neural network model was used to directly predict the optimal partition mode of CU
thus skipping redundant CU partition traversal. Secondly
a fast algorithm for intra-frame mode selection based on spatial correlation and texture features was proposed. The average direction variance and Sobel gradient operator were used to determine the texture direction
some angle prediction modes were skipped
and the correlation between prediction modes to streamline the rate-distortion mode list were combined. Experimental results show that this algorithm can save 64.04% of encoding time at the cost of increasing BDBR by 2.29%.
BROSS B , WANG Y K , YE Y , et al . Overview of the versatile video coding(VVC) standard and its applications [J ] . IEEE Transactions on Circuits and Systems for Video Technology , 2021 , 31 ( 10 ): 3736 - 3764 .
HUANG Y W , AN J C , HUANG H , et al . Block partitioning structure in the VVC standard [J ] . IEEE Transactions on Circuits and Systems for Video Technology , 2021 , 31 ( 10 ): 3818 - 3833 .
MA X , YANG H , CHEN J . CE3: CCLM/MDLM using simplified coefficients derivation method(Test 5.6. 1, 5.6. 2 and 5.6. 3) [J ] . Joint Video Experts Team(JVET) of ITU-T SG , 2018 ( 16 ): 3 - 12 .
CHEN J , YE Y , KIM S . Algorithm description for versatile video coding and test model 5(VTM 5) [EB ] . 2019 .
JIANLE C . Algorithm description for versatile video coding and test model 4(VTM 4) [EB ] . 2019 .
SANTIAGO D L H . CE3: Intra sub-partitions coding mode [EB ] . 2019 .
BROSS B , CHEN J L , OHM J R , et al . Developments in international video coding standardization after AVC, with an overview of versatile video coding(VVC) [J ] . Proceedings of the IEEE , 2021 , 109 ( 9 ): 1463 - 1493 .
PAKDAMAN F , ALI A M , GABBOUJ M , et al . Complexity analysis of next-generation VVC encoding and decoding [C ] // Proceedings of the 2020 IEEE International Conference on Image Processing(ICIP) . Piscataway : IEEE Press , 2020 : 3134 - 3138 .
LI Y , YANG G B , SONG Y , et al . Early intra CU size decision for versatile video coding based on a tunable decision model [J ] . IEEE Transactions on Broadcasting , 2021 , 67 ( 3 ): 710 - 720 .
DONG X C , SHEN L Q , YU M , et al . Fast intra mode decision algorithm for versatile video coding [J ] . IEEE Transactions on Multimedia , 2022 ( 24 ): 400 - 414 .
TANG N , CAO J , LIANG F , et al . Fast CTU partition decision algorithm for VVC intra and inter coding [C ] // Proceedings of the 2019 IEEE Asia Pacific Conference on Circuits and Systems(APCCAS) . Piscataway : IEEE Press , 2019 : 361 - 364 .
陈燕辉 , 李强 , 董阳 , 等 . 基于CU特征差异的VVC帧内快速划分算法 [J ] . 计算机应用研究 , 2024 , 41 ( 3 ) : 939 - 943 .
CHEN Y H , LI Q , DONG Y , et al . Fast partitioning algorithm for VVC intra coding based on the characteristic differences [J ] . Application Research of Computers , 2024 , 41 ( 3 ) : 939 - 943 .
WU G , HUANG Y , ZHU C , et al . SVM based fast CU partitioning algorithm for VVC intra coding [C ] // Proceedings of the 2021 IEEE International Symposium on Circuits and Systems . Piscataway : IEEE Press , 2021 : 1 - 5 .
LIU X , LI Y , LIU D , et al . An adaptive CU size decision algorithm for HEVC intra prediction based on complexity classification using machine learning [J ] . IEEE Transactions on Circuits and Systems for Video Technology , 2017 , 29 ( 1 ): 144 - 155 .
PARK S , KANG J W . Fast multi-type tree partitioning for versatile video coding using a lightweight neural network [J ] . IEEE Transactions on Multimedia , 2020 ( 23 ): 4388 - 4399 .
ZHANG S , FENG S , CHEN J , et al . A GCN-based fast CU partition method of intra-mode VVC [J ] . Journal of Visual Communication and Image Representation , 2022 , 88 : 103621 .
WU S , SHI J , CHEN Z . HG-FCN: hierarchical grid fully convolutional network for fast VVC intra coding [J ] . IEEE Transactions on Circuits and Systems for Video Technology , 2022 , 32 ( 8 ): 5638 - 5649 .
程栋梁 , 张吟龙 , 周道先 , 等 . 基于DenseNet+FPN网络的视频帧内CU快速划分算法 [J ] . 光电子·激光 , 2024 : 1 - 8 .
CHENG D L , ZHANG Y L , ZHOU D X , et al . A DenseNet+FPN network based fast partitioning algorithm for CU intra coding [J ] . Journal of Optoelectronics·Laser , 2024 : 1 - 8
ZHANG Q , GUO R , JIANG B , et al . Fast CU decision-making algorithm based on DenseNet network for VVC [J ] . IEEE Access , 2021 ( 9 ): 119289 - 119297 .
DANG-NGUYEN D T , PASQUINI C , CONONTTER V , et al . Raise: a raw images dataset for digital image forensics [C ] // Proceedings of the 6th ACM Multimedia Systems Conference . New York : ACM Press , 2015 : 219 - 224 .
HAN K , WANG Y , GUO J , et al . Vision gnn: an image is worth graph of nodes [J ] . Advances in Neural Information Processing Systems , 2022 ( 35 ): 8291 - 8303 .
HUANG Z , WANG X , HUANG L , et al . CCNet: criss-cross attention for semantic segmentation [C ] // Proceedings of the IEEE/CVF international conference on computer vision . Piscataway : IEEE Press , 2019 : 603 - 612 .
BJONTEGAARD G . Calculation of average PSNR differences between RD-curves [J ] . ITU SG16 Doc. VCEG-M33 , 2001 .
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构