浏览全部资源
扫码关注微信
1.国网山西省电力公司电力科学研究院,山西 太原 030001
2.国网山西省电力公司,山西 太原 030021
[ "刘珊(1987- ),女,国网山西省电力公司电力科学研究院高级工程师,主要研究方向为电网数字化及网络攻防技术。" ]
李瑞(1981- ),男,博士,国网山西省电力公司电力科学研究院正高级工程师,主要研究方向为电力系统自动化及其智能数字化技术。
王尧(1991- ),男,国网山西省电力公司工程师,主要研究方向为电网网络安全攻击防御技术。
收稿日期:2024-06-07,
修回日期:2024-10-13,
纸质出版日期:2024-10-20
移动端阅览
刘珊,李瑞,王尧.基于改进长短期记忆网络的新能源场站网络安全评估方法研究[J].电信科学,2024,40(10):124-133.
LIU Shan,LI Rui,WANG Yao.Research on new energy station network security assessment method based on improved LSTM network[J].Telecommunications Science,2024,40(10):124-133.
刘珊,李瑞,王尧.基于改进长短期记忆网络的新能源场站网络安全评估方法研究[J].电信科学,2024,40(10):124-133. DOI: 10.11959/j.issn.1000-0801.2024226.
LIU Shan,LI Rui,WANG Yao.Research on new energy station network security assessment method based on improved LSTM network[J].Telecommunications Science,2024,40(10):124-133. DOI: 10.11959/j.issn.1000-0801.2024226.
为了解决新能源大规模并网造成现有新能源场站网络安全防护体系无法满足网络异常监测和告警需求的问题,提出一种基于改进长短期记忆网络的新能源场站网络安全评估方法。首先,根据新能源场站网络系统架构,分析网络安全发生原因;其次,基于随机森林算法求解新能源场站网络流量的基尼系数,进而求出网络流量所有特征的重要系数,选出重要特征;最后,将重要特征输入长短期记忆网络中,利用注意力机制自适应分配数据的时间和特征,加强对网络流量中重要时间和特征的重视,进而提高模型对网络安全评估的准确性。试验结果表明,该方法能够准确评估新能源场站网络安全状态,与支持向量机、卷积神经网络、传统长短期记忆网络相比,评估准确率分别提升了12.65%、9.34%、8.79%,提升了新能源电力系统的网络安全状态感知、评价和告警能力。
In order to solve the problem of the inability of the existing network security protection system for new energy stations to meet the needs of network anomaly monitoring and alarm caused by the large-scale integration of new energy
a new energy station network security assessment method based on an improved long short-term memory network was proposed. Firstly
based on the architecture of the new energy station network system
the reasons for network security incidents were analyzed. Secondly
based on the random forest algorithm
the Gini coefficient of new energy station network traffic was solved
and then the important coefficients of all network traffic features were calculated to select important features. Finally
important features were input into the long short-term memory network
and attention mechanisms were used to adaptively allocate data time and features
strengthening the emphasis on important time and features in network traffic
thereby improving the accuracy of the model for network security assessment. The experimental results show that this method can accurately evaluate the network security status of new energy power stations. Compared with support vector machines
convolutional neural networks
and traditional long short-term memory networks
the evaluation accuracy has been improved by 12.65%
9.34% and 8.79%
respectively
enhancing the perception
evaluation
and alarm capabilities of network security status in new energy power systems.
金志刚 , 刘凯 , 武晓栋 . 智能电网AMI领域IDS研究综述 [J ] . 信息网络安全 , 2023 , 23 ( 1 ): 1 - 8 .
JIN Z G , LIU K , WU X D . A review of IDS research in smart grid AMI field [J ] . Netinfo Security , 2023 , 23 ( 1 ): 1 - 8 .
周劼英 , 张晓 , 邵立嵩 , 等 . 新型电力系统网络安全防护挑战与展望 [J ] . 电力系统自动化 , 2023 , 47 ( 8 ): 15 - 24 .
ZHOU J Y , ZHANG X , SHAO L S , et al . Challenges and prospects of cyber security protection for new power system [J ] . Automation of Electric Power Systems , 2023 , 47 ( 8 ): 15 - 24 .
陈伟雄 , 杨晓晨 , 春增军 , 等 . 电力企业网络安全威胁情报管理体系的研究与实践 [J ] . 电信科学 , 2022 , 38 ( 7 ): 184 - 189 .
CHEN W X , YANG X C , CHUN Z J , et al . Research and practice of network security threat intelligence management system for power enterprise [J ] . Telecommunications Science , 2022 , 38 ( 7 ): 184 - 189 .
WANG S X , CHEN H W , ZHAO Q Y , et al . Preserving scheme for user’s confidential information in smart grid based on digital watermark and asymmetric encryption [J ] . Journal of Central South University , 2022 , 29 ( 2 ): 726 - 740 .
王增平 , 林一峰 , 王彤 , 等 . 电力系统继电保护与安全控制面临的挑战与应对措施 [J ] . 电力系统保护与控制 , 2023 , 51 ( 6 ): 10 - 20 .
WANG Z P , LIN Y F , WANG T , et al . Challenges and countermeasures to power system relay protection and safety control [J ] . Power System Protection and Control , 2023 , 51 ( 6 ): 10 - 20 .
辛耀中 , 石俊杰 , 周京阳 , 等 . 智能电网调度控制系统现状与技术展望 [J ] . 电力系统自动化 , 2015 , 39 ( 1 ): 2 - 8 .
XIN Y Z , SHI J J , ZHOU J Y , et al . Technology development trends of smart grid dispatching and control systems [J ] . Automation of Electric Power Systems , 2015 , 39 ( 1 ): 2 - 8 .
王超 . 计算机网络安全中入侵检测系统的研究与设计 [D ] . 成都 : 电子科技大学 , 2007 .
WANG C . Research and design of intrusion detection system in computer network security [D ] . Chengdu : University of Electronic Science and Technology of China , 2007 .
金学奇 , 苏达 , 毛南平 , 等 . 面向新能源场站的主动监视与预警技术研究 [J ] . 浙江电力 , 2019 , 38 ( 6 ): 106 - 112 .
JIN X Q , SU D , MAO N P , et al . Research on active monitoring and early warning technology for new energy station [J ] . Zhejiang Electric Power , 2019 , 38 ( 6 ): 106 - 112 .
刘博 , 李梁 , 刘军娜 , 等 . 新能源场站电力监控系统网络安全薄弱环节分析 [J ] . 电工技术 , 2021 ( 18 ): 78 - 80 .
LIU B , LI L , LIU J N , et al . Analysis of weak links in network security of power monitoring system in new energy fields [J ] . Electric Engineering , 2021 ( 18 ): 78 - 80 .
韩硕 , 戚红建 , 李宏亮 . 新能源场站网络安全态势感知和监测预警平台设计 [J ] . 工业信息安全 , 2023 ( 3 ): 69 - 75 .
HAN S , QI H J , LI H L . Design of a new energy station network security situation awareness and monitoring & warning platform [J ] . Industry Information Security , 2023 ( 3 ): 69 - 75 .
熊中浩 , 张伟 , 杨国玉 . 基于DBN的网络安全态势评估和态势预测建模研究 [J ] . 电子技术应用 , 2021 , 47 ( 5 ): 35 - 39, 44 .
XIONG Z H , ZHANG W , YANG G Y . Research on network security situation assessment and situation prediction modeling based on DBN [J ] . Application of Electronic Technique , 2021 , 47 ( 5 ): 35 - 39, 44 .
罗予东 , 陆璐 . 基于人工神经网络和遗传算法的网络攻击检测 [J ] . 计算机工程与设计 , 2021 , 42 ( 9 ): 2446 - 2454 .
LUO Y D , LU L . Network attack detection based on artificial neural networks and genetic algorithm [J ] . Computer Engineering and Design , 2021 , 42 ( 9 ): 2446 - 2454 .
杨宏宇 , 张旭高 . 一种网络安全态势自适应预测模型 [J ] . 西安电子科技大学学报 , 2020 , 47 ( 3 ): 14 - 22 .
YANG H Y , ZHANG X G . Network security situation adaptive prediction model [J ] . Journal of Xidian University , 2020 , 47 ( 3 ): 14 - 22 .
王婷 , 王娜 , 崔运鹏 , 等 . 基于半监督学习的无线网络攻击行为检测优化方法 [J ] . 计算机研究与发展 , 2020 , 57 ( 4 ): 791 - 802 .
WANG T , WANG N , CUI Y P , et al . The optimization method of wireless network attacks detection based on semi-supervised learning [J ] . Journal of Computer Research and Development , 2020 , 57 ( 4 ): 791 - 802 .
ZHANG J J , WANG P , YAN R Q , et al . Long short-term memory for machine remaining life prediction [J ] . Journal of Manufacturing Systems , 2018 ( 48 ): 78 - 86 .
SU C , LI L , WEN Z J . Remaining useful life prediction via a variational autoencoder and a time-window-based sequence neural network [J ] . Quality and Reliability Engineering International , 2020 , 36 ( 5 ): 1639 - 1656 .
李京峰 , 陈云翔 , 项华春 , 等 . 基于LSTM-DBN的航空发动机剩余寿命预测 [J ] . 系统工程与电子技术 , 2020 , 42 ( 7 ): 1637 - 1644 .
LI J F , CHEN Y X , XIANG H C , et al . Remaining useful life prediction for aircraft engine based on LSTM-DBN [J ] . Systems Engineering and Electronics , 2020 , 42 ( 7 ): 1637 - 1644 .
CHEN Z H , WU M , ZHAO R , et al . Machine remaining useful life prediction via an attention-based deep learning approach [J ] . IEEE Transactions on Industrial Electronics , 2021 , 68 ( 3 ): 2521 - 2531 .
ZHANG Y , XIN Y Q , LIU Z W , et al . Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE [J ] . Reliability Engineering & System Safety , 2022 ( 220 ): 108263 .
闫啸家 , 梁伟阁 , 张钢 , 等 . 基于RCNN-ABiLSTM的机械设备剩余寿命预测方法 [J ] . 系统工程与电子技术 , 2023 , 45 ( 3 ): 931 - 940 .
YAN X J , LIANG W G , ZHANG G , et al . Prediction method for mechanical equipment based on RCNN-ABiLSTM [J ] . Systems Engineering and Electronics , 2023 , 45 ( 3 ): 931 - 940 .
ZHANG X Y , YIN F , ZHANG Y M , et al . Drawing and recognizing Chinese characters with recurrent neural network [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2018 , 40 ( 4 ): 849 - 862 .
GUO L , LI N P , JIA F , et al . A recurrent neural network based health indicator for remaining useful life prediction of bearings [J ] . Neurocomputing , 2017 ( 240 ): 98 - 109 .
WANG H , PENG M J , MIAO Z , et al . Remaining useful life prediction techniques for electric valves based on convolution auto encoder and long short term memory [J ] . ISA Transactions , 2021 ( 108 ): 333 - 342 .
ZHAO H T , SUN S Y , JIN B . Sequential fault diagnosis based on LSTM neural network [J ] . IEEE Access , 2018 ( 6 ): 12929 - 12939 .
SONG H , DAI J J , LUO L G , et al . Power transformer operating state prediction method based on an LSTM network [J ] . Energies , 2018 , 11 ( 4 ): 914 .
NANDURI A , SHERRY L . Anomaly detection in aircraft data using Recurrent Neural Networks (RNN) [C ] // Proceedings of the 2016 Integrated Communications Navigation and Surveillance (ICNS) . Piscataway : IEEE Press , 2016 : 5C2-1-5C2 - 8 .
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构